间充质干细胞
细胞生物学
视网膜
神经保护
干细胞
视网膜
小胶质细胞
细胞保护
微泡
生物
小RNA
免疫学
炎症
药理学
细胞凋亡
神经科学
生物化学
基因
作者
Biji Mathew,Lorea Gamboa,Leianne A. Torres,Chun-Chieh Huang,Alice Liu,Sergey Kalinin,Kasey Leung,Yang Dai,Douglas L. Feinstein,Sriram Ravindran,Steven Roth
标识
DOI:10.1016/j.actbio.2023.01.014
摘要
Mesenchymal stem cell (MSCs)-derived extracellular vesicles (EVs) are emerging therapeutic tools. Hypoxic pre-conditioning (HPC) of MSCs altered the production of microRNAs (miRNAs) in EVs, and enhanced the cytoprotective, anti-inflammatory, and neuroprotective properties of their derivative EVs in retinal cells. EV miRNAs were identified as the primary contributors of these EV functions. Through miRNA seq analyses, miRNA-424 was identified as a candidate for the retina to overexpress in EVs for enhancing cytoprotection and anti-inflammatory effects. FEEs (functionally engineered EVs) overexpressing miR424 (FEE424) significantly enhanced neuroprotection and anti-inflammatory activities in vitro in retinal cells. FEE424 functioned by reducing inflammatory cytokine production in retinal microglia, and attenuating oxygen free radicals in retinal Muller cells and microvascular endothelial cells, providing a multi-pronged approach to enhancing recovery after retinal ischemic insult. In an in vivo model of retinal ischemia, native, HPC, and FEE424 MSC EVs robustly and similarly restored function to close to baseline, and prevented loss of retinal ganglion cells, but HPC EVs provided the most effective attenuation of apoptosis-related and inflammatory cytokine gene expression. These results indicate the potential for EV engineering to produce ameliorative effects for retinal diseases with a significant inflammatory component. STATEMENT OF SIGNIFICANCE: We show that functionally engineered extracellular vesicles (FEEs) from mesenchymal stem cells (MSCs) provide cytoprotection in rat retina subjected to ischemia. FEEs overexpressing microRNA 424 (FEE424) function by reducing inflammatory cytokine production in retinal microglia, and attenuating oxygen free radicals in Muller cells and microvascular endothelial cells, providing a multi-pronged approach to enhancing recovery. In an in vivo model of retinal ischemia in rats, native, hypoxic-preconditioned (HPC), and FEE424 MSC EVs robustly and similarly restored function, and prevented loss of retinal ganglion cells, but HPC EVs provided the most effective attenuation of apoptosis-related and inflammatory cytokine gene expression. The results indicate the potential for EV engineering to produce ameliorative effects for retinal diseases with a significant inflammatory component.
科研通智能强力驱动
Strongly Powered by AbleSci AI