Multi-scale relational graph convolutional network for multiple instance learning in histopathology images

人工智能 计算机科学 放大倍数 图形 模式识别(心理学) 卷积神经网络 嵌入 理论计算机科学
作者
Roozbeh Bazargani,Ladan Fazli,Martin Gleave,Larry Goldenberg,Ali Bashashati,Septimiu E. Salcudean
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:96: 103197-103197 被引量:1
标识
DOI:10.1016/j.media.2024.103197
摘要

Graph convolutional neural networks have shown significant potential in natural and histopathology images. However, their use has only been studied in a single magnification or multi-magnification with either homogeneous graphs or only different node types. In order to leverage the multi-magnification information and improve message passing with graph convolutional networks, we handle different embedding spaces at each magnification by introducing the Multi-Scale Relational Graph Convolutional Network (MS-RGCN) as a multiple instance learning method. We model histopathology image patches and their relation with neighboring patches and patches at other scales (i.e., magnifications) as a graph. We define separate message-passing neural networks based on node and edge types to pass the information between different magnification embedding spaces. We experiment on prostate cancer histopathology images to predict the grade groups based on the extracted features from patches. We also compare our MS-RGCN with multiple state-of-the-art methods with evaluations on several source and held-out datasets. Our method outperforms the state-of-the-art on all of the datasets and image types consisting of tissue microarrays, whole-mount slide regions, and whole-slide images. Through an ablation study, we test and show the value of the pertinent design features of the MS-RGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萤阳发布了新的文献求助10
刚刚
lsl发布了新的文献求助10
1秒前
科科完成签到 ,获得积分10
1秒前
Yuxiao完成签到,获得积分10
1秒前
光影发布了新的文献求助10
1秒前
zhao发布了新的文献求助10
2秒前
影子完成签到,获得积分10
2秒前
智慧吗喽发布了新的文献求助20
3秒前
QQ完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
浮游应助SibetHu采纳,获得10
6秒前
7秒前
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
充电宝应助lk0312采纳,获得10
9秒前
开朗艳一完成签到,获得积分10
9秒前
10秒前
南桃发布了新的文献求助10
10秒前
10秒前
ding应助为神指路采纳,获得10
10秒前
婕哥发布了新的文献求助30
11秒前
哈哈发布了新的文献求助20
12秒前
星辰大海应助无辜忆丹采纳,获得10
12秒前
大角牛完成签到,获得积分10
13秒前
13秒前
yyyyj发布了新的文献求助10
13秒前
14秒前
nanfeng发布了新的文献求助10
14秒前
11发布了新的文献求助10
14秒前
15秒前
微笑语山完成签到,获得积分20
15秒前
庾稀发布了新的文献求助10
16秒前
直率无春完成签到,获得积分10
17秒前
科研通AI6应助chem采纳,获得10
17秒前
ECMWF发布了新的文献求助10
17秒前
竹筏过海应助__采纳,获得30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073899
求助须知:如何正确求助?哪些是违规求助? 4294034
关于积分的说明 13380250
捐赠科研通 4115419
什么是DOI,文献DOI怎么找? 2253626
邀请新用户注册赠送积分活动 1258399
关于科研通互助平台的介绍 1191234