Deep Feature Aggregation Network for Hyperspectral Anomaly Detection

高光谱成像 异常检测 特征(语言学) 人工智能 模式识别(心理学) 计算机科学 异常(物理) 特征提取 遥感 地质学 物理 凝聚态物理 语言学 哲学
作者
Xi Cheng,Yu Huo,Sheng Lin,Youqiang Dong,Shaobo Zhao,Min Zhang,Hai Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-16 被引量:21
标识
DOI:10.1109/tim.2024.3403211
摘要

Hyperspectral anomaly detection (HAD) is a challenging task since it identifies the anomaly targets without prior knowledge. In recent years, deep learning methods have emerged as one of the most popular algorithms in the HAD. These methods operate on the assumption that the background is well reconstructed while anomalies cannot, and the degree of anomaly for each pixel is represented by reconstruction errors. However, most approaches treat all background pixels of a hyperspectral image (HSI) as one type of ground object. This assumption does not always hold in practical scenes, making it difficult to distinguish between backgrounds and anomalies effectively. To address this issue, a novel deep feature aggregation network (DFAN) is proposed in this paper, and it develops a new paradigm for HAD to represent multiple patterns of backgrounds. The DFAN adopts an adaptive aggregation model, which combines the orthogonal spectral attention module with the background-anomaly category statistics module. This allows effective utilization of spectral and spatial information to capture the distribution of the background and anomaly. To optimize the proposed DFAN better, a novel multiple aggregation separation loss is designed, and it is based on the intra-similarity and inter-difference from the background and anomaly. The constraint function reduces the potential anomaly representation and strengthens the potential background representation. Additionally, the extensive experiments on the six real hyperspectral datasets demonstrate that the proposed DFAN achieves superior performance for HAD. The code is available at https://github.com/ChengXi-1217/DFAN-HAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情诗云完成签到,获得积分10
1秒前
1秒前
宁馨明完成签到,获得积分10
1秒前
ChenCC发布了新的文献求助10
2秒前
帅佳明完成签到,获得积分10
2秒前
田様应助蛋疼先生采纳,获得10
3秒前
3秒前
张资阳发布了新的文献求助10
4秒前
所所应助S1mple_gentleman采纳,获得10
4秒前
5秒前
6秒前
6秒前
7秒前
wmmm发布了新的文献求助10
7秒前
7秒前
奋斗的夏兰完成签到,获得积分10
8秒前
负责觅波发布了新的文献求助10
8秒前
甜美爆米花完成签到,获得积分10
9秒前
XD824发布了新的文献求助10
9秒前
拉宝了完成签到,获得积分10
10秒前
科研通AI5应助圆圆采纳,获得10
10秒前
11秒前
dd99081发布了新的文献求助10
11秒前
11秒前
深情安青应助余南采纳,获得10
11秒前
田様应助余南采纳,获得10
11秒前
情怀应助余南采纳,获得10
11秒前
丘比特应助余南采纳,获得10
11秒前
Owen应助余南采纳,获得10
11秒前
斯文败类应助余南采纳,获得10
11秒前
12秒前
维时发布了新的文献求助10
12秒前
13秒前
鱼头星星发布了新的文献求助10
13秒前
稀罕你发布了新的文献求助10
13秒前
Su发布了新的文献求助10
13秒前
糖糖给糖糖的求助进行了留言
14秒前
14秒前
FashionBoy应助空禅yew采纳,获得30
14秒前
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Mechanochemistry of Solid Surfaces 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806482
求助须知:如何正确求助?哪些是违规求助? 3351205
关于积分的说明 10353253
捐赠科研通 3067051
什么是DOI,文献DOI怎么找? 1684265
邀请新用户注册赠送积分活动 809450
科研通“疑难数据库(出版商)”最低求助积分说明 765515