Prediction of Multiple Types of RNA Modifications via Biological Language Model

计算机科学 计算生物学 人工智能 核糖核酸 生物 遗传学 基因
作者
Ying Zhang,Fang Ge,Fuyi Li,Xibei Yang,Jiangning Song,Dong‐Jun Yu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 3205-3214 被引量:12
标识
DOI:10.1109/tcbb.2023.3283985
摘要

It has been demonstrated that RNA modifications play essential roles in multiple biological processes. Accurate identification of RNA modifications in the transcriptome is critical for providing insights into the biological functions and mechanisms. Many tools have been developed for predicting RNA modifications at single-base resolution, which employ conventional feature engineering methods that focus on feature design and feature selection processes that require extensive biological expertise and may introduce redundant information. With the rapid development of artificial intelligence technologies, end-to-end methods are favorably received by researchers. Nevertheless, each well-trained model is only suitable for a specific RNA methylation modification type for nearly all of these approaches. In this study, we present MRM-BERT by feeding task-specific sequences into the powerful BERT (Bidirectional Encoder Representations from Transformers) model and implementing fine-tuning, which exhibits competitive performance to the state-of-the-art methods. MRM-BERT avoids repeated de novo training of the model and can predict multiple RNA modifications such as pseudouridine, m6A, m5C, and m1A in Mus musculus , Arabidopsis thaliana , and Saccharomyces cerevisiae . In addition, we analyse the attention heads to provide high attention regions for the prediction, and conduct saturated in silico mutagenesis of the input sequences to discover potential changes of RNA modifications, which can better assist researchers in their follow-up research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bubble完成签到,获得积分10
刚刚
可爱的函函应助企鹅采纳,获得10
刚刚
某某发布了新的文献求助10
1秒前
5年科研3年毕业完成签到,获得积分10
1秒前
迷人耗子精完成签到,获得积分10
1秒前
星辰大海应助科研通管家采纳,获得10
2秒前
小太阳发布了新的文献求助30
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
3秒前
Hello应助无糖全麦面包采纳,获得30
3秒前
调皮黑猫应助科研通管家采纳,获得10
3秒前
调皮黑猫应助科研通管家采纳,获得20
3秒前
heavenhorse应助科研通管家采纳,获得30
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
3秒前
打打应助爱吃鸡蛋采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得80
3秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
传奇3应助科研通管家采纳,获得30
4秒前
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
4秒前
澪mio发布了新的文献求助10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
聪明的灵寒完成签到 ,获得积分10
5秒前
6秒前
顾矜应助树下的枫凉采纳,获得30
7秒前
超级蘑菇发布了新的文献求助10
9秒前
上官若男应助albertxin采纳,获得10
10秒前
EW完成签到,获得积分10
11秒前
zzzuuu关注了科研通微信公众号
12秒前
丘比特应助某某采纳,获得10
12秒前
LL完成签到,获得积分10
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803558
求助须知:如何正确求助?哪些是违规求助? 3348465
关于积分的说明 10338603
捐赠科研通 3064504
什么是DOI,文献DOI怎么找? 1682623
邀请新用户注册赠送积分活动 808381
科研通“疑难数据库(出版商)”最低求助积分说明 764038