FireMatch: A semi-supervised video fire detection network based on consistency and distribution alignment

计算机科学 正规化(语言学) 一致性(知识库) 标记数据 人工智能 对抗制 机器学习 特征(语言学) 模式识别(心理学) 数据挖掘 哲学 语言学
作者
Qinghua Lin,Zuoyong Li,Kun Zeng,Haoyi Fan,Wei Li,Xiaoguang Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123409-123409 被引量:7
标识
DOI:10.1016/j.eswa.2024.123409
摘要

Deep learning techniques have greatly enhanced the performance of fire detection in videos. However, video-based fire detection models heavily rely on labeled data, and the process of data labeling is particularly costly and time-consuming, especially when dealing with videos. Considering the limited quantity of labeled video data, we propose a semi-supervised fire detection model called FireMatch, which is based on consistency regularization and adversarial distribution alignment. Specifically, we first combine consistency regularization with pseudo-label. For unlabeled data, we design video data augmentation to obtain corresponding weakly augmented and strongly augmented samples. The proposed model predicts weakly augmented samples and retains pseudo-label above a threshold, while training on strongly augmented samples to predict these pseudo-labels for learning more robust feature representations. Secondly, we generate video cross-set augmented samples by adversarial distribution alignment to expand the training data and alleviate the decline in classification performance caused by insufficient labeled data. Finally, we introduce a fairness loss to help the model produce diverse predictions for input samples, thereby addressing the issue of high confidence with the non-fire class in fire classification scenarios. The FireMatch achieved an accuracy of 76.92% and 91.80% on two real-world fire datasets, respectively. The experimental results demonstrate that the proposed method outperforms the current state-of-the-art semi-supervised classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
dinghaifeng完成签到,获得积分10
3秒前
5秒前
8秒前
白衣卿相完成签到,获得积分20
9秒前
顾矜应助ruirui采纳,获得10
11秒前
李健的小迷弟应助cruise采纳,获得10
14秒前
gua发布了新的文献求助10
15秒前
Shawn_54完成签到,获得积分10
15秒前
烟花应助liwen采纳,获得10
16秒前
攸宁发布了新的文献求助10
16秒前
18秒前
He完成签到,获得积分10
18秒前
Zeal完成签到,获得积分10
19秒前
GGB完成签到,获得积分10
20秒前
pilot完成签到,获得积分10
20秒前
20秒前
奇异完成签到 ,获得积分10
21秒前
22秒前
zombleq发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
24秒前
热带蚂蚁发布了新的文献求助10
25秒前
隐形曼青应助hs采纳,获得30
26秒前
ruirui发布了新的文献求助10
27秒前
27秒前
27秒前
完美的大米完成签到,获得积分10
27秒前
Hello应助小鹅采纳,获得10
28秒前
gua完成签到,获得积分10
28秒前
28秒前
28秒前
刘子田发布了新的文献求助10
28秒前
zcx完成签到,获得积分10
29秒前
cjw完成签到,获得积分20
30秒前
30秒前
30秒前
信号灯发布了新的文献求助10
31秒前
verna完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461731
求助须知:如何正确求助?哪些是违规求助? 4566660
关于积分的说明 14306714
捐赠科研通 4492567
什么是DOI,文献DOI怎么找? 2461039
邀请新用户注册赠送积分活动 1450117
关于科研通互助平台的介绍 1425651