Intelligent Agricultural Greenhouse Control System Based on Internet of Things and Machine Learning

温室 物联网 农业 控制(管理) 计算机科学 智能控制 互联网 业务 人工智能 农业工程 计算机安全 工程类 万维网 地理 农学 考古 生物
作者
Cangqing Wang
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2402.09488
摘要

This study endeavors to conceptualize and execute a sophisticated agricultural greenhouse control system grounded in the amalgamation of the Internet of Things (IoT) and machine learning. Through meticulous monitoring of intrinsic environmental parameters within the greenhouse and the integration of machine learning algorithms, the conditions within the greenhouse are aptly modulated. The envisaged outcome is an enhancement in crop growth efficiency and yield, accompanied by a reduction in resource wastage. In the backdrop of escalating global population figures and the escalating exigencies of climate change, agriculture confronts unprecedented challenges. Conventional agricultural paradigms have proven inadequate in addressing the imperatives of food safety and production efficiency. Against this backdrop, greenhouse agriculture emerges as a viable solution, proffering a controlled milieu for crop cultivation to augment yields, refine quality, and diminish reliance on natural resources [b1]. Nevertheless, greenhouse agriculture contends with a gamut of challenges. Traditional greenhouse management strategies, often grounded in experiential knowledge and predefined rules, lack targeted personalized regulation, thereby resulting in resource inefficiencies. The exigencies of real-time monitoring and precise control of the greenhouse's internal environment gain paramount importance with the burgeoning scale of agriculture. To redress this challenge, the study introduces IoT technology and machine learning algorithms into greenhouse agriculture, aspiring to institute an intelligent agricultural greenhouse control system conducive to augmenting the efficiency and sustainability of agricultural production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李白的白123完成签到,获得积分10
1秒前
武雨寒发布了新的文献求助10
2秒前
dingsw完成签到 ,获得积分10
2秒前
Lucas应助zm采纳,获得10
2秒前
Sally完成签到 ,获得积分10
2秒前
2秒前
wisper完成签到,获得积分20
6秒前
踏雪飞鸿发布了新的文献求助10
6秒前
Beyond095完成签到 ,获得积分10
6秒前
华仔应助渡己。采纳,获得10
6秒前
潇潇发布了新的文献求助10
7秒前
7秒前
Orange应助懵懂的灭男采纳,获得10
9秒前
11应助贰什柒采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
Skuld应助科研通管家采纳,获得10
10秒前
10秒前
所所应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
核桃应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
谓风发布了新的文献求助10
11秒前
bingbing完成签到,获得积分10
15秒前
李健的小迷弟应助乐鲨采纳,获得10
15秒前
16秒前
afree发布了新的文献求助30
17秒前
21秒前
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800648
求助须知:如何正确求助?哪些是违规求助? 3345931
关于积分的说明 10327683
捐赠科研通 3062411
什么是DOI,文献DOI怎么找? 1680999
邀请新用户注册赠送积分活动 807318
科研通“疑难数据库(出版商)”最低求助积分说明 763627