Machine Learning Through Physics–Informed Neural Networks: Progress and Challenges

人工神经网络 认知科学 计算机科学 人工智能 工程伦理学 心理学 工程类
作者
Klapa Antonion,Xiao Wang,Maziar Raissi,Laurn Joshie
出处
期刊:Academic journal of science and technology [Darcy & Roy Press Co. Ltd.]
卷期号:9 (1): 46-49 被引量:22
标识
DOI:10.54097/b1d21816
摘要

Physics-Informed Neural Networks (PINNs) represent a groundbreaking approach wherein neural networks (NNs) integrate model equations, such as Partial Differential Equations (PDEs), within their architecture. This innovation has become instrumental in solving diverse problem sets including PDEs, fractional equations, integral-differential equations, and stochastic PDEs. It's a versatile multi-task learning framework that tasks NNs with fitting observed data while simultaneously minimizing PDE residuals. This paper delves into the landscape of PINNs, aiming to delineate their inherent strengths and weaknesses. Beyond exploring the fundamental characteristics of these networks, this review endeavors to encompass a wider spectrum of collocation-based physics-informed neural networks, extending beyond the core PINN model. Variants like physics-constrained neural networks (PCNN), variational hp-VPINN, and conservative PINN (CPINN) constitute pivotal aspects of this exploration. The study accentuates a predominant focus in research on tailoring PINNs through diverse strategies: adapting activation functions, refining gradient optimization techniques, innovating neural network structures, and enhancing loss function architectures. Despite the extensive applicability demonstrated by PINNs, surpassing classical numerical methods like Finite Element Method (FEM) in certain contexts, the review highlights ongoing opportunities for advancement. Notably, there are persisting theoretical challenges that demand resolution, ensuring the continued evolution and refinement of this revolutionary approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hilda007发布了新的文献求助30
刚刚
乔燃发布了新的文献求助10
1秒前
可乐发布了新的文献求助10
1秒前
123发布了新的文献求助10
2秒前
归雁完成签到,获得积分10
3秒前
思源应助蓝胖胖采纳,获得10
4秒前
yangquanquan完成签到,获得积分10
4秒前
任性铅笔发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
科研通AI6应助风雅采纳,获得30
7秒前
wqkkk完成签到,获得积分10
9秒前
9秒前
10秒前
大个应助banksy采纳,获得10
10秒前
10秒前
zZZZCB发布了新的文献求助10
11秒前
11秒前
11秒前
保奔发布了新的文献求助10
12秒前
13秒前
小二郎应助li采纳,获得10
13秒前
13秒前
14秒前
14秒前
英俊的铭应助重要砖头采纳,获得10
14秒前
123关闭了123文献求助
15秒前
16秒前
16秒前
16秒前
无情的mm发布了新的文献求助10
16秒前
不止关注了科研通微信公众号
17秒前
17秒前
爆米花应助小艾采纳,获得10
18秒前
科研通AI6应助hs采纳,获得10
18秒前
18秒前
king发布了新的文献求助10
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547632
求助须知:如何正确求助?哪些是违规求助? 4633117
关于积分的说明 14629382
捐赠科研通 4574643
什么是DOI,文献DOI怎么找? 2508462
邀请新用户注册赠送积分活动 1484914
关于科研通互助平台的介绍 1455971