亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Drug side effects prediction via cross attention learning and feature aggregation

计算机科学 副作用(计算机科学) 图形 机器学习 特征(语言学) 保险丝(电气) 人工智能 图嵌入 特征学习 数据挖掘 嵌入 理论计算机科学 电气工程 语言学 工程类 哲学 程序设计语言
作者
Zixiao Jin,Minhui Wang,Xiao Zheng,Jiajia Chen,Chang Tang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:248: 123346-123346 被引量:2
标识
DOI:10.1016/j.eswa.2024.123346
摘要

The issue of drug safety has received increasing attention in modern society. Estimating the frequency of drug side effects proves to be an effective approach to improving drug development safety. Clinical trials are the most widely used manner in the medical field, but their long duration and high labor costs are always challenging for researchers. Many drug side effect frequency prediction methods based on graph neural networks have also been proposed and achieved good results. However, most current mainstream methods extract feature information separately for drugs and side effects but fail to capture their interaction information, which seriously degenerates the final prediction performance. To solve this problem, we have proposed a network to explore the underlying relationship between drugs and the frequency of side effects by combining graph attention learning, cross attention interaction, and feature aggregation into a unified framework. In this network, we first use the graph attention mechanism to accomplish effective feature extraction for drugs and side effects, respectively. Then, by designing a cross-attention interaction module, the chemical characteristics of each atom of the drug and the correlation between the side effects are captured to gather information on the interaction between the drug and the side effects. Subsequently, we fully fuse graph attention features and interaction attention features by embedding a feature fusion module to obtain enhanced features that fuse drugs and side effects. Finally, the predicted frequency is obtained using matrix inner product operation. Experimental results on the SIDER dataset show that our proposed method achieves the best performance when compared to previous state-of-the-art methods in both warm start and cold start scenarios. We also conducted ablation experiments to demonstrate the effectiveness of different modules embedded in the network. The code, datasets, and materials are available at https://github.com/zixiaojin66/A-3Net-master. In addition, we construct a user-friendly web server for testing at: https://a3net666.streamlit.app/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tonghau895完成签到 ,获得积分10
7秒前
imomoe完成签到,获得积分10
38秒前
Georgechan完成签到,获得积分10
45秒前
史前巨怪完成签到,获得积分10
1分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
小鱼完成签到 ,获得积分10
2分钟前
wykion完成签到,获得积分0
2分钟前
潘果果完成签到,获得积分10
2分钟前
Inten完成签到 ,获得积分10
2分钟前
2分钟前
xxx完成签到,获得积分10
2分钟前
吴嘉俊完成签到 ,获得积分10
2分钟前
2分钟前
葱饼完成签到 ,获得积分10
3分钟前
an完成签到,获得积分10
3分钟前
南无双发布了新的文献求助50
3分钟前
blenx完成签到,获得积分10
3分钟前
科研通AI2S应助欣喜的念寒采纳,获得10
3分钟前
去以六月息完成签到 ,获得积分10
3分钟前
酷波er应助xxx采纳,获得10
4分钟前
852应助Corn_Dog采纳,获得10
4分钟前
4分钟前
4分钟前
xxx发布了新的文献求助10
4分钟前
4分钟前
Corn_Dog发布了新的文献求助10
4分钟前
隐形曼青应助lessormoto采纳,获得10
4分钟前
4分钟前
momo发布了新的文献求助10
4分钟前
万邦德完成签到,获得积分10
5分钟前
tdtk发布了新的文献求助10
5分钟前
tdtk发布了新的文献求助10
5分钟前
5分钟前
一段段发布了新的文献求助10
5分钟前
sycsyc完成签到,获得积分10
5分钟前
星辰大海应助嘚嘚采纳,获得10
5分钟前
彭于晏应助一段段采纳,获得10
5分钟前
tdtk发布了新的文献求助10
5分钟前
Leung应助科研通管家采纳,获得10
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782649
求助须知:如何正确求助?哪些是违规求助? 3328051
关于积分的说明 10234287
捐赠科研通 3043022
什么是DOI,文献DOI怎么找? 1670433
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758971