Wide-angle ultra-wideband metamaterial absorber based on complex dielectric layer in long and very long-wave infrared

光学 材料科学 超材料 宽带 红外线的 电介质 图层(电子) 可调谐超材料 光电子学 物理 复合材料
作者
Xiangtao Chen,Zhongzhu Liang,Shi Xiaoyan,Yang Fu-ming,Rui Dai,Yongjun Dong,Yan Jia,Wei Xintong,候恩柱 HOU En-Zhu,Zhe Wu
出处
期刊:Optics Communications [Elsevier BV]
卷期号:: 130455-130455 被引量:2
标识
DOI:10.1016/j.optcom.2024.130455
摘要

Long and very long-wave infrared are the most important bands in infrared detection technology because of their high atmospheric window radiation energy. At present, long and very long-wave infrared detectors are widely used in atmospheric monitoring, night reconnaissance, deep space exploration and other fields. In this paper, we first analyze the coupling resonance in the dual-band absorber (Ti–Si–Ti), and the absorption rates are 97.05% and 98.95% at 6.1 μm and 19.2 μm, respectively. Then, a four-layer (Ti–Si–SiO2–Ti) absorber with a complex dielectric structure is obtained by using the surface plasmon resonance and the inherent absorption of the lossy material SiO2. In addition to the traditional electromagnetic field analysis, we also used the layer absorption energy loss theory to study the inherent absorption mechanism of SiO2, and the average absorption of the absorber from 19 to 24.7 μm reached 92.87%. Finally, based on the composite dielectric layer, a thin ultra-wideband absorber with four nanorods of the same size surface structure was designed, and the average absorption was 92.03% from 13.3 to 24.6 μm. The polarization-insensitive ultra-wideband absorber proposed by us is light, simple in structure and easy to manufacture, and has potential application value in atmospheric monitoring, night reconnaissance, deep space exploration and other fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然冬灵应助研友_xnEOX8采纳,获得60
1秒前
misty完成签到,获得积分10
1秒前
2秒前
3秒前
烟花应助苏栀采纳,获得10
5秒前
5秒前
7秒前
7秒前
8秒前
zzz发布了新的文献求助10
9秒前
研友_LOqqmZ发布了新的文献求助10
9秒前
10秒前
充电宝应助小王采纳,获得10
11秒前
舒心牛青发布了新的文献求助10
12秒前
12秒前
科研阿白完成签到 ,获得积分10
12秒前
脑洞疼应助小文殊采纳,获得10
12秒前
种桃老总发布了新的文献求助10
13秒前
13秒前
15秒前
吴晓敏发布了新的文献求助10
15秒前
15秒前
16秒前
科研通AI2S应助孙雷采纳,获得10
17秒前
19秒前
blind完成签到,获得积分10
19秒前
郭囯完成签到,获得积分10
19秒前
naturehome发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
23秒前
斯文败类应助瓜瓜叽叽采纳,获得10
23秒前
wanz完成签到,获得积分10
23秒前
23秒前
遇见发布了新的文献求助10
24秒前
yhy发布了新的文献求助10
24秒前
种桃老总完成签到,获得积分10
25秒前
Zack发布了新的文献求助10
28秒前
小马儿完成签到 ,获得积分10
30秒前
高分求助中
Many-electron theory of superexchange 1000
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832976
求助须知:如何正确求助?哪些是违规求助? 3375338
关于积分的说明 10488816
捐赠科研通 3094998
什么是DOI,文献DOI怎么找? 1704156
邀请新用户注册赠送积分活动 819814
科研通“疑难数据库(出版商)”最低求助积分说明 771661