A comparison review of transfer learning and self-supervised learning: Definitions, applications, advantages and limitations

计算机科学 学习迁移 人工智能 机器学习 深度学习 任务(项目管理) 多任务学习 监督学习 人工神经网络 经济 管理
作者
Zehui Zhao,Laith Alzubaidi,Jinglan Zhang,Ye Duan,Yuantong Gu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:242: 122807-122807 被引量:40
标识
DOI:10.1016/j.eswa.2023.122807
摘要

Deep learning has emerged as a powerful tool in various domains, revolutionising machine learning research. However, one persistent challenge is the scarcity of labelled training data, which hampers the performance and generalisation of deep learning models. To address this limitation, researchers have developed innovative methods to overcome data scarcity and enhance deep model learning capabilities. Two prevalent techniques that have gained significant attention are transfer learning and self-supervised learning. Transfer learning leverages knowledge learned from pre-training on a large-scale dataset, such as ImageNet, and applies it to a target task with limited labelled data. This approach allows models to benefit from the learned representations and effectively transfer knowledge to new tasks, resulting in improved learning performance and generalisation. On the other hand, self-supervised learning focuses on training models using pretext tasks that do not require manual annotation, allowing them to learn valuable representations from large amounts of unlabelled data. These learned representations can then be fine-tuned for downstream tasks, mitigating the need for extensive labelled data. In recent years, transfer and self-supervised learning have found applications in various fields, including medical image processing, video recognition, and natural language processing. These approaches have demonstrated remarkable achievements, enabling breakthroughs in areas such as disease diagnosis, object recognition, and language understanding. However, while these methods offer numerous advantages, they also have limitations. For example, transfer learning may face domain mismatch issues between the pre-training and target domains, while self-supervised learning requires careful design of pretext tasks to ensure meaningful representations. This review paper explores the recent applications of these pre-training methods in various fields within the past three years. It delves into the advantages and limitations of each approach, assesses the performance of models employing these techniques, and identifies potential directions for future research. By providing a comprehensive review of current pre-training methods, this article offers guidance for selecting the best technique for specific deep learning applications to address the data scarcity issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
碎米花发布了新的文献求助10
2秒前
zz发布了新的文献求助10
3秒前
独白完成签到,获得积分10
4秒前
王哪跑12完成签到,获得积分10
4秒前
jgs发布了新的文献求助10
5秒前
AAAADiao发布了新的文献求助10
6秒前
yancn完成签到,获得积分20
6秒前
7秒前
eru完成签到,获得积分10
9秒前
Akim应助沉甸甸采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
无限小霜完成签到,获得积分10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
李健应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
Grin完成签到,获得积分10
16秒前
17秒前
17秒前
完美凝海完成签到,获得积分10
19秒前
19秒前
入戏太深发布了新的文献求助10
21秒前
23秒前
23秒前
28秒前
30秒前
zhi完成签到,获得积分10
31秒前
夹心吉吉发布了新的文献求助10
36秒前
害羞的紫伊完成签到,获得积分10
37秒前
咿呀咿呀完成签到 ,获得积分10
43秒前
高挑的迎夏完成签到,获得积分20
44秒前
hehe完成签到,获得积分10
44秒前
lw完成签到,获得积分10
44秒前
Pursue完成签到,获得积分10
46秒前
包谷冬完成签到 ,获得积分0
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776514
求助须知:如何正确求助?哪些是违规求助? 3321990
关于积分的说明 10208390
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872