清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Data-Driven Methodology for Contextual Unit Commitment Using Regression Residuals

回归分析 电力系统仿真 计量经济学 回归 单位(环理论) 计算机科学 统计 电力系统 工程类 功率(物理) 数学 物理 数学教育 量子力学
作者
Ogun Yurdakul,Güzi̇n Bayraksan
出处
期刊:IEEE Transactions on Power Systems [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 6914-6933
标识
DOI:10.1109/tpwrs.2024.3373700
摘要

Day after day, system operators are faced with the challenge of taking unit commitment (UC) decisions under uncertain net load conditions. The standard operating procedure for taking UC decisions begins by leveraging auxiliary data on covariates (such as the day of the week or latest weather information) to generate a point prediction for net load, which is used in solving a deterministic UC problem. Such an approach, however, is known to deliver a notoriously poor out-of-sample (OOS) performance, as it completely disregards the stochastic nature of net load. While stochastic programming models explicitly represent uncertainty, they mostly do so using a generic set of scenarios that neglect covariate observations, squandering useful auxiliary data that could be harnessed to glean insights into uncertainty. In this article, we discuss a contextual stochastic optimization approach to UC, which effectively exploits covariate observations while explicitly assessing uncertainty so as to boost the OOS performance of UC decisions. The key thrust of our approach is to leverage regression models, along with their empirical residuals, to set up and solve sample average approximation problems. Not only do we prove that our approach satisfies the requisite conditions for asymptotic optimality and consistency laid out in (Kannan et al., 2022), but we also assess its performance on several case studies conducted using real-world data collected in California ISO and New York ISO grids. Results show that the proposed approach can significantly improve OOS performance compared to alternative methods proposed in the literature under varying dataset sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
John完成签到 ,获得积分10
24秒前
40秒前
欣欣完成签到 ,获得积分10
41秒前
Tong完成签到,获得积分0
41秒前
淞淞于我完成签到 ,获得积分10
42秒前
bwx完成签到,获得积分10
53秒前
怕孤单的安蕾完成签到 ,获得积分10
55秒前
从容芮应助bwx采纳,获得50
58秒前
asdwind完成签到,获得积分10
1分钟前
超男完成签到 ,获得积分10
1分钟前
vsvsgo完成签到,获得积分10
1分钟前
雁塔完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
葫芦芦芦完成签到 ,获得积分10
1分钟前
务实的奇迹完成签到 ,获得积分10
1分钟前
小蘑菇应助贪玩钢铁侠采纳,获得10
1分钟前
1分钟前
lixi完成签到,获得积分10
1分钟前
Ava应助黑球采纳,获得10
1分钟前
DJ_Tokyo完成签到,获得积分10
2分钟前
淡然藏花完成签到 ,获得积分10
2分钟前
Shoujiang完成签到 ,获得积分10
2分钟前
2分钟前
黑球发布了新的文献求助10
2分钟前
隐形曼青应助黑球采纳,获得10
2分钟前
lixuebin完成签到 ,获得积分10
2分钟前
jlwang完成签到,获得积分10
3分钟前
3分钟前
keyan完成签到 ,获得积分10
3分钟前
豆豆哥完成签到 ,获得积分10
3分钟前
小张完成签到 ,获得积分10
4分钟前
aowulan完成签到 ,获得积分10
4分钟前
加贝完成签到 ,获得积分10
4分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
4分钟前
4分钟前
俏皮的松鼠完成签到 ,获得积分10
4分钟前
車侖完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330065
关于积分的说明 10244270
捐赠科研通 3045416
什么是DOI,文献DOI怎么找? 1671678
邀请新用户注册赠送积分活动 800597
科研通“疑难数据库(出版商)”最低求助积分说明 759524