Artificial intelligence-powered pharmacovigilance: A review of machine and deep learning in clinical text-based adverse drug event detection for benchmark datasets

药物警戒 水准点(测量) 深度学习 计算机科学 不良事件报告系统 人工智能 事件(粒子物理) 机器学习 支持向量机 不利影响 数据科学 医学 药理学 地图学 物理 量子力学 地理
作者
Yiming Li,Wei Tao,Zehan Li,Zenan Sun,Li Fang,Susan H. Fenton,Hua Xu,Cui Tao
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:152: 104621-104621 被引量:14
标识
DOI:10.1016/j.jbi.2024.104621
摘要

The primary objective of this review is to investigate the effectiveness of machine learning and deep learning methodologies in the context of extracting adverse drug events (ADEs) from clinical benchmark datasets. We conduct an in-depth analysis, aiming to compare the merits and drawbacks of both machine learning and deep learning techniques, particularly within the framework of named-entity recognition (NER) and relation classification (RC) tasks related to ADE extraction. Additionally, our focus extends to the examination of specific features and their impact on the overall performance of these methodologies. In a broader perspective, our research extends to ADE extraction from various sources, including biomedical literature, social media data, and drug labels, removing the limitation to exclusively machine learning or deep learning methods. We conducted an extensive literature review on PubMed using the query "(((machine learning [Medical Subject Headings (MeSH) Terms]) OR (deep learning [MeSH Terms])) AND (adverse drug event [MeSH Terms])) AND (extraction)", and supplemented this with a snowballing approach to review 275 references sourced from retrieved articles. In our analysis, we included twelve articles for review. For the NER task, deep learning models outperformed machine learning models. In the RC task, gradient Boosting, multilayer perceptron and random forest models excelled. The Bidirectional Encoder Representations from Transformers (BERT) model consistently achieved the best performance in the end-to-end task. Future efforts in the end-to-end task should prioritize improving NER accuracy, especially for 'ADE' and 'Reason'. These findings hold significant implications for advancing the field of ADE extraction and pharmacovigilance, ultimately contributing to improved drug safety monitoring and healthcare outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kulei发布了新的文献求助10
1秒前
科目三应助迅速的八宝粥采纳,获得10
2秒前
Hello应助lily336699采纳,获得10
3秒前
秋刀鱼不过期完成签到 ,获得积分10
3秒前
杨灿完成签到,获得积分10
5秒前
满意尔芙完成签到,获得积分20
5秒前
小二郎应助何YI采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
科目三应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
大腚疯猪应助科研通管家采纳,获得30
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
17秒前
17秒前
momo末流主应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
20秒前
25秒前
28秒前
可爱邓邓完成签到 ,获得积分10
29秒前
核桃发布了新的文献求助10
31秒前
31秒前
魏123456发布了新的文献求助10
36秒前
忐忑的雪糕完成签到 ,获得积分0
37秒前
Eve完成签到,获得积分10
37秒前
luster完成签到 ,获得积分10
39秒前
40秒前
42秒前
Lei发布了新的文献求助10
45秒前
一二发布了新的文献求助10
46秒前
科研通AI2S应助顺熙采纳,获得10
47秒前
WSY发布了新的文献求助10
47秒前
何YI发布了新的文献求助10
47秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802646
求助须知:如何正确求助?哪些是违规求助? 3348268
关于积分的说明 10337419
捐赠科研通 3064257
什么是DOI,文献DOI怎么找? 1682495
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764013