Predicting fungal secondary metabolite activity from biosynthetic gene cluster data using machine learning

代谢物 基因簇 计算生物学 星团(航天器) 生物 基因 计算机科学 遗传学 生物化学 程序设计语言
作者
Olivia Riedling,Allison S. Walker,Antonis Rokas
出处
期刊:Microbiology spectrum [American Society for Microbiology]
卷期号:12 (2) 被引量:11
标识
DOI:10.1128/spectrum.03400-23
摘要

Fungal secondary metabolites (SMs) contribute to the diversity of fungal ecological communities, niches, and lifestyles. Many fungal SMs have one or more medically and industrially important activities (e.g., antifungal, antibacterial, and antitumor). The genes necessary for fungal SM biosynthesis are typically located right next to each other in the genome and are known as biosynthetic gene clusters (BGCs). However, whether fungal SM bioactivity can be predicted from specific attributes of genes in BGCs remains an open question. We adapted machine learning models that predicted SM bioactivity from bacterial BGC data with accuracies as high as 80% to fungal BGC data. We trained our models to predict the antibacterial, antifungal, and cytotoxic/antitumor bioactivity of fungal SMs on two data sets: (i) fungal BGCs (data set comprised of 314 BGCs) and (ii) fungal (314 BGCs) and bacterial BGCs (1,003 BGCs). We found that models trained on fungal BGCs had balanced accuracies between 51% and 68%, whereas training on bacterial and fungal BGCs had balanced accuracies between 56% and 68%. The low prediction accuracy of fungal SM bioactivities likely stems from the small size of the data set; this lack of data, coupled with our finding that including bacterial BGC data in the training data did not substantially change accuracies currently limits the application of machine learning approaches to fungal SM studies. With >15,000 characterized fungal SMs, millions of putative BGCs in fungal genomes, and increased demand for novel drugs, efforts that systematically link fungal SM bioactivity to BGCs are urgently needed.IMPORTANCEFungi are key sources of natural products and iconic drugs, including penicillin and statins. DNA sequencing has revealed that there are likely millions of biosynthetic pathways in fungal genomes, but the chemical structures and bioactivities of >99% of natural products produced by these pathways remain unknown. We used artificial intelligence to predict the bioactivities of diverse fungal biosynthetic pathways. We found that the accuracies of our predictions were generally low, between 51% and 68%, likely because the natural products and bioactivities of only very few fungal pathways are known. With >15,000 characterized fungal natural products, millions of putative biosynthetic pathways present in fungal genomes, and increased demand for novel drugs, our study suggests that there is an urgent need for efforts that systematically identify fungal biosynthetic pathways, their natural products, and their bioactivities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
g3618发布了新的文献求助10
1秒前
李李李娟发布了新的文献求助20
3秒前
3秒前
syr1462发布了新的文献求助30
3秒前
99668完成签到,获得积分10
4秒前
4秒前
夏硕发布了新的文献求助10
4秒前
4秒前
领导范儿应助阿龙采纳,获得10
5秒前
oooh完成签到,获得积分10
5秒前
5秒前
阿莴鹅完成签到,获得积分10
6秒前
6秒前
kk发布了新的文献求助10
7秒前
7秒前
8秒前
Lay完成签到,获得积分20
8秒前
1号选手发布了新的文献求助10
8秒前
8秒前
Clover完成签到 ,获得积分10
8秒前
8秒前
JoeZ发布了新的文献求助10
9秒前
g3618完成签到,获得积分10
9秒前
10秒前
香蕉觅云应助溪风采纳,获得10
10秒前
10秒前
黑白和完成签到 ,获得积分10
11秒前
12秒前
hry发布了新的文献求助10
12秒前
13秒前
SciGPT应助缓慢咖啡采纳,获得10
13秒前
科研通AI2S应助xiaohuanshen采纳,获得30
13秒前
13秒前
脑洞疼应助ZHANES采纳,获得10
14秒前
宗笑晴发布了新的文献求助10
14秒前
焦立超发布了新的文献求助10
14秒前
14秒前
热情凝云发布了新的文献求助10
15秒前
mrjohn发布了新的文献求助10
15秒前
瘦瘦的冬寒完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3912216
求助须知:如何正确求助?哪些是违规求助? 3457504
关于积分的说明 10896052
捐赠科研通 3183901
什么是DOI,文献DOI怎么找? 1759890
邀请新用户注册赠送积分活动 851184
科研通“疑难数据库(出版商)”最低求助积分说明 792549