Deep learning for the identification of ridge deficiency around dental implants

上颌窦 医学 山脊 牙槽嵴 下颌骨(节肢动物口器) 上颌骨 植入 牙科 口腔正畸科 裂开 地质学 外科 植物 生物 古生物学
作者
Chih-Hung Lin,Hom‐Lay Wang,Linda Chia-Hui Yu,Po‐Yung Chou,Hao‐Chieh Chang,Chin‐Hao Chang,Ping-Chuan Chang
出处
期刊:Clinical Implant Dentistry and Related Research [Wiley]
标识
DOI:10.1111/cid.13301
摘要

Abstract Objectives This study aimed to use a deep learning (DL) approach for the automatic identification of the ridge deficiency around dental implants based on an image slice from cone‐beam computerized tomography (CBCT). Materials and methods Single slices crossing the central long‐axis of 630 mandibular and 845 maxillary virtually placed implants (4–5 mm diameter, 10 mm length) in 412 patients were used. The ridges were classified based on the intraoral bone‐implant support and sinus floor location. The slices were either preprocessed by alveolar ridge homogenizing prior to DL (preprocessed) or left unpreprocessed. A convolutional neural network with ResNet‐50 architecture was employed for DL. Results The model achieved an accuracy of >98.5% on the unpreprocessed image slices and was found to be superior to the accuracy observed on the preprocessed slices. On the mandible, model accuracy was 98.91 ± 1.45%, and F1 score, a measure of a model's accuracy in binary classification tasks, was lowest (97.30%) on the ridge with a combined horizontal‐vertical defect. On the maxilla, model accuracy was 98.82 ± 1.11%, and the ridge presenting an implant collar‐sinus floor distance of 5–10 mm with a dehiscence defect had the lowest F1 score (95.86%). To achieve >90% model accuracy, ≥441 mandibular slices or ≥592 maxillary slices were required. Conclusions The ridge deficiency around dental implants can be identified using DL from CBCT image slices without the need for preprocessed homogenization. The model will be further strengthened by implementing more clinical expertise in dental implant treatment planning and incorporating multiple slices to classify 3‐dimensional implant‐ridge relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适的念薇完成签到,获得积分20
1秒前
adgcxvjj完成签到,获得积分10
1秒前
Peter完成签到,获得积分10
2秒前
orixero应助小朋友采纳,获得10
2秒前
小杨完成签到,获得积分10
2秒前
DD完成签到,获得积分10
2秒前
Singularity应助hezi采纳,获得10
2秒前
delect完成签到,获得积分10
2秒前
rin发布了新的文献求助50
3秒前
wss发布了新的文献求助10
3秒前
99完成签到,获得积分10
4秒前
玲家傻妞完成签到 ,获得积分10
4秒前
zjq4302完成签到,获得积分10
4秒前
茶艺大师づ完成签到,获得积分10
5秒前
活泼新儿发布了新的文献求助10
5秒前
TT完成签到,获得积分10
5秒前
lilac完成签到,获得积分10
5秒前
cctv18应助adgcxvjj采纳,获得10
6秒前
开朗世立发布了新的文献求助10
6秒前
6秒前
Karvs完成签到,获得积分10
7秒前
无情寒珊完成签到,获得积分10
7秒前
8秒前
lishui完成签到 ,获得积分10
9秒前
玖玖完成签到,获得积分10
9秒前
皮卡啾完成签到,获得积分10
9秒前
LV发布了新的文献求助10
11秒前
冷艳的幻桃完成签到,获得积分10
13秒前
搜集达人应助chichenglin采纳,获得10
13秒前
菜菜鱼完成签到,获得积分10
14秒前
15秒前
Henry应助科研通管家采纳,获得10
15秒前
千流完成签到,获得积分10
16秒前
薄荷小姐完成签到 ,获得积分10
16秒前
chao2333完成签到 ,获得积分10
16秒前
开放道天发布了新的文献求助10
16秒前
17秒前
zooro完成签到,获得积分10
18秒前
liuuuuuu应助加减乘除采纳,获得10
18秒前
格兰德法泽尔完成签到,获得积分10
18秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052685
求助须知:如何正确求助?哪些是违规求助? 2709958
关于积分的说明 7418667
捐赠科研通 2354578
什么是DOI,文献DOI怎么找? 1246164
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595925