Uncertainty-Aware Hierarchical Aggregation Network for Medical Image Segmentation

图像分割 计算机科学 人工智能 图像(数学) 计算机视觉 图像处理 分割 图像纹理 模式识别(心理学)
作者
Tao Zhou,Yi Zhou,Guangyu Li,Geng Chen,Jianbing Shen
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 7440-7453 被引量:5
标识
DOI:10.1109/tcsvt.2024.3370685
摘要

Medical image segmentation is an essential process to assist clinics with computer-aided diagnosis and treatment. Recently, a large amount of convolutional neural network (CNN)-based methods have been rapidly developed and achieved remarkable performances in several different medical image segmentation tasks. However, the same type of infected region or lesions often has a diversity of scales, making it a challenging task to achieve accurate medical image segmentation. In this paper, we present a novel Uncertainty-aware Hierarchical Aggregation Network, namely UHA-Net, for medical image segmentation, which can fully make utilization of cross-level and multi-scale features to handle scale variations. Specifically, we propose a hierarchical feature fusion (HFF) module to aggregate high-level features, which is used to produce a global map for the coarse localization of the segmented target. Then, we propose an uncertainty-induced cross-level fusion (UCF) module to fully fuse features from the adjacent levels, which can learn knowledge guidance to capture the contextual information from adjacent resolutions. Further, a scale aggregation module (SAM) is presented to learn multi-scale features by using different convolution kernels, to effectively deal with scale variations. At last, we formulate a unified framework to simultaneously fuse inter-layer convolutional features and learn the discriminability of multi-scale representations from the intra-layer features, leading to accurate segmentation results. We carry out experiments on three different medical image segmentation tasks, and the results demonstrate that our UHA-Net outperforms state-of-the-art segmentation methods. Our implementation code and segmentation maps will be publicly at https://github.com/taozh2017/UHANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
qin1172001发布了新的文献求助10
4秒前
科研菜鸟完成签到,获得积分10
4秒前
贰什柒发布了新的文献求助10
7秒前
9秒前
不安太阳完成签到,获得积分10
9秒前
小于爱科研完成签到,获得积分10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
残幻应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
11秒前
执着代曼关注了科研通微信公众号
11秒前
孙敬汝关注了科研通微信公众号
15秒前
wangyy65发布了新的文献求助10
15秒前
贰什柒完成签到,获得积分10
16秒前
iii完成签到,获得积分10
17秒前
Capedem完成签到 ,获得积分10
18秒前
Capedem完成签到 ,获得积分10
30秒前
科研通AI5应助corner采纳,获得10
44秒前
45秒前
45秒前
自信若之发布了新的文献求助10
50秒前
宋丽薇发布了新的文献求助10
51秒前
51秒前
要减肥冰菱完成签到 ,获得积分10
52秒前
55秒前
田様应助自信若之采纳,获得10
55秒前
纯情的心情完成签到,获得积分10
58秒前
英俊的铭应助Galaxee采纳,获得10
58秒前
想流浪的鱼完成签到 ,获得积分10
59秒前
1分钟前
可靠蹇完成签到,获得积分10
1分钟前
vc发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777073
求助须知:如何正确求助?哪些是违规求助? 3322455
关于积分的说明 10210340
捐赠科研通 3037802
什么是DOI,文献DOI怎么找? 1666872
邀请新用户注册赠送积分活动 797829
科研通“疑难数据库(出版商)”最低求助积分说明 758044