Development of deep-learning models for real-time anaerobic threshold and peak VO2 prediction during cardiopulmonary exercise testing

医学 无氧运动 相关系数 最大VO2 物理疗法 机器学习 心脏病学 统计 内科学 心率 血压 数学 计算机科学
作者
Tatsuya Watanabe,Takeshi Tohyama,Masataka Ikeda,Takeo Fujino,Toru Hashimoto,Shouji Matsushima,Junji Kishimoto,Koji Todaka,Shintaro Kinugawa,Hiroyuki Tsutsui,Tomomi Ide
出处
期刊:European Journal of Preventive Cardiology [Oxford University Press]
卷期号:31 (4): 448-457 被引量:8
标识
DOI:10.1093/eurjpc/zwad375
摘要

Abstract Aims Exercise intolerance is a clinical feature of patients with heart failure (HF). Cardiopulmonary exercise testing (CPET) is the first-line examination for assessing exercise capacity in patients with HF. However, the need for extensive experience in assessing anaerobic threshold (AT) and the potential risk associated with the excessive exercise load when measuring peak oxygen uptake (peak VO2) limit the utility of CPET. This study aimed to use deep-learning approaches to identify AT in real time during testing (defined as real-time AT) and to predict peak VO2 at real-time AT. Methods and results This study included the time-series data of CPET recorded at the Department of Cardiovascular Medicine, Kyushu University Hospital. Two deep neural network models were developed to: (i) estimate the AT probability using breath-by-breath data and (ii) predict peak VO2 using the data at the real-time AT. The eligible CPET contained 1472 records of 1053 participants aged 18–90 years and 20% were used for model evaluation. The developed model identified real-time AT with 0.82 for correlation coefficient (Corr) and 1.20 mL/kg/min for mean absolute error (MAE), and the corresponding AT time with 0.86 for Corr and 0.66 min for MAE. The peak VO2 prediction model achieved 0.87 for Corr and 2.25 mL/kg/min for MAE. Conclusion Deep-learning models for real-time CPET analysis can accurately identify AT and predict peak VO2. The developed models can be a competent assistant system to assess a patient’s condition in real time, expanding CPET utility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DXY发布了新的文献求助10
1秒前
咕咚完成签到,获得积分10
2秒前
瓜瓜完成签到,获得积分10
3秒前
现代的访曼应助Oliver采纳,获得20
5秒前
毕葛完成签到 ,获得积分10
5秒前
8秒前
leo666完成签到,获得积分10
9秒前
矮小的保温杯完成签到,获得积分10
10秒前
11秒前
DXY完成签到,获得积分10
11秒前
完美世界应助vc采纳,获得10
12秒前
咕咚发布了新的文献求助10
14秒前
weidan1993发布了新的文献求助10
14秒前
李健应助阿胡采纳,获得10
15秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
缓慢逍遥完成签到 ,获得积分10
18秒前
bkagyin应助咕咚采纳,获得10
20秒前
xzj发布了新的文献求助10
22秒前
科目三应助瓜瓜采纳,获得10
25秒前
清明完成签到,获得积分10
29秒前
30秒前
32秒前
32秒前
weidan1993完成签到,获得积分10
32秒前
英俊的铭应助清明采纳,获得10
33秒前
糊涂的不尤完成签到 ,获得积分10
34秒前
邱型程应助斯文的人生采纳,获得10
34秒前
叶叶叶完成签到,获得积分10
35秒前
hhhh发布了新的文献求助10
36秒前
科研小虫发布了新的文献求助30
36秒前
可耐的摩托完成签到,获得积分10
40秒前
槿曦完成签到 ,获得积分10
40秒前
英姑应助wnag采纳,获得10
42秒前
42秒前
失眠的晓绿完成签到,获得积分10
42秒前
秦宇麒完成签到,获得积分20
42秒前
42秒前
43秒前
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982338
求助须知:如何正确求助?哪些是违规求助? 3525951
关于积分的说明 11229459
捐赠科研通 3263804
什么是DOI,文献DOI怎么找? 1801680
邀请新用户注册赠送积分活动 879972
科研通“疑难数据库(出版商)”最低求助积分说明 807750