Predicting Pedestrian Crossing Intention With Feature Fusion and Spatio-Temporal Attention

计算机科学 行人 背景(考古学) 人工智能 保险丝(电气) 行人检测 RGB颜色模型 特征(语言学) 人工神经网络 分割 机器学习 计算机视觉 工程类 哲学 古生物学 运输工程 电气工程 生物 语言学
作者
Dongfang Yang,Haolin Zhang,Ekim Yurtsever,Keith Redmill,Ümi̇t Özgüner
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:7 (2): 221-230 被引量:114
标识
DOI:10.1109/tiv.2022.3162719
摘要

Predicting vulnerableroad user behavior is an essential prerequisite for deploying Automated Driving Systems (ADS) in the real-world. Pedestrian crossing intention should be recognized in real-time, especially for urban driving. Recent works have shown the potential of using vision-based deep neural network models for this task. However, these models are not robust and certain issues still need to be resolved. First, the global spatio-temporal context that accounts for the interaction between the target pedestrian and the scene has not been properly utilized. Second, the optimal strategy for fusing different sensor data has not been thoroughly investigated. This work addresses the above limitations by introducing a novel neural network architecture to fuse inherently different spatio-temporal features for pedestrian crossing intention prediction. We fuse different phenomena such as sequences of RGB imagery, semantic segmentation masks, and ego-vehicle speed in an optimal way using attention mechanisms and a stack of recurrent neural networks. The optimal architecture was obtained through exhaustive ablation and comparison studies. Extensive comparative experiments on the JAAD and PIE pedestrian action prediction benchmarks demonstrate the effectiveness of the proposed method, where state-of-the-art performance was achieved. Our code is open-source and publicly available: https://github.com/OSU-Haolin/Pedestrian_Crossing_Intention_Prediction .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重诗珊完成签到,获得积分10
1秒前
restudy68完成签到,获得积分10
2秒前
123完成签到,获得积分20
3秒前
hbpu230701完成签到,获得积分0
4秒前
saturn完成签到 ,获得积分10
5秒前
5秒前
xjz240221完成签到 ,获得积分10
9秒前
NexusExplorer应助TANG采纳,获得10
9秒前
mito完成签到,获得积分10
9秒前
10秒前
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
Andy应助科研通管家采纳,获得20
10秒前
Orange应助科研通管家采纳,获得10
10秒前
Jiaming应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
CR7应助科研通管家采纳,获得20
10秒前
落后幼晴应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
liliflower应助科研通管家采纳,获得10
11秒前
accepted应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
12秒前
fang应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
一蓑烟雨完成签到,获得积分10
12秒前
SciGPT应助Ann采纳,获得10
13秒前
勤奋花瓣完成签到,获得积分10
14秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4043906
求助须知:如何正确求助?哪些是违规求助? 3581706
关于积分的说明 11384328
捐赠科研通 3308909
什么是DOI,文献DOI怎么找? 1821202
邀请新用户注册赠送积分活动 893613
科研通“疑难数据库(出版商)”最低求助积分说明 815776