光学
极化(电化学)
人工神经网络
反问题
反向
材料科学
计算机科学
物理
人工智能
数学
几何学
数学分析
物理化学
化学
作者
Wanglei Chen,Runkun Li,Zetian Huang,Hao Wu,Jingyang Wei,Shu Wang,Le Wang,Yanghui Li
出处
期刊:Applied Optics
[Optica Publishing Group]
日期:2023-02-13
卷期号:62 (8): 2048-2048
被引量:2
摘要
To address the problem of multiple solutions and improve the calculating speed, we construct a tandem architecture consisting of a forward modeling network and an inverse design network. Using this combined network, we inversely design the circular polarization converter and analyze the effect of different design parameters on the prediction accuracy of the polarization conversion rate. The average mean square error of the circular polarization converter is 0.00121 at an average prediction time of 1.56×10-2s. If only the forward modeling process is considered, it takes 6.15×10-4s, which is 2.1×105 times faster than that using the traditional numerical full-wave simulation method. By slightly resizing the network input and output layers, the network is adaptable to the design of both the linear cross-polarization and linear-to-circular polarization converters.
科研通智能强力驱动
Strongly Powered by AbleSci AI