Enhanced LiteHRNet based sheep weight estimation using RGB-D images

人工智能 估计 卷积神经网络 RGB颜色模型 人工神经网络 机器学习 计算机科学 工程类 系统工程
作者
Chong He,Yongliang Qiao,Rui Mao,Mei Li,Meili Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:206: 107667-107667 被引量:29
标识
DOI:10.1016/j.compag.2023.107667
摘要

Sheep farming is a strategic sector of livestock husbandry, and its production has large market demand in many countries. The live weight of sheep provides important information about the health state and the time point for marketing. Manual weighing sheep is time-consuming for farmers even with the help of a ground scale. With the development of Artificial Intelligence (AI) and smart sensors, non-contact sheep weighing methods have gradually been used to estimate weight. However, the performance of prior studies tends to degenerate with varying postures and light conditions in practical natural environments. In this study, we propose a sheep live weight estimation approach based on LiteHRNet (a Lightweight High-Resolution Network) using RGB-D images. Class Activation Mapping (CAM) guided the design of efficient network heads embracing visual explanation and applicability in practical natural environments. Experiments are conducted on our challenging dataset (of 726 sheep RGB-D images, weight range between 19.5 to 94 kg). Comparative experiment results reveal that the lightweight Convolutional Neural Network (CNN) model trained on RGB-D images can reach an acceptable weight estimation result, Mean Average Percentage Error (MAPE) is 14.605% (95% confidence interval: [13.821%, 15.390%], t test) with only 1.06M parameters. Our works can be viewed as preliminary work that confirms the ability to use lightweight CNNs for sheep weight estimation on RGB-D data. The results of this study are potential to develop an embedded device to automatically estimate sheep live weight and would contribute to the development of precision livestock farming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
林子完成签到,获得积分10
1秒前
2秒前
feihua完成签到,获得积分10
2秒前
斯文败类应助愉快的乐双采纳,获得10
4秒前
小蘑菇应助感性的靖仇采纳,获得10
5秒前
彳亍1117应助aser采纳,获得10
5秒前
6秒前
细心秀发发布了新的文献求助10
6秒前
Aurora发布了新的文献求助10
7秒前
SciGPT应助sslou采纳,获得30
7秒前
言卓完成签到,获得积分10
7秒前
蓝色的纪念完成签到,获得积分10
8秒前
8秒前
Jasper应助外向的夜梦采纳,获得10
8秒前
9秒前
小菜完成签到,获得积分10
9秒前
chcmuer发布了新的文献求助10
10秒前
CipherSage应助zengkk采纳,获得10
10秒前
11秒前
12秒前
科研通AI5应助程雯慧采纳,获得10
13秒前
苹果发布了新的文献求助10
13秒前
田様应助TWX采纳,获得10
14秒前
Jasper应助good233采纳,获得10
14秒前
wanci应助qqa采纳,获得10
15秒前
15秒前
乔治完成签到,获得积分10
16秒前
bkagyin应助小田采纳,获得10
16秒前
小全关注了科研通微信公众号
16秒前
宋莱文完成签到,获得积分10
16秒前
16秒前
伶俐惜萱发布了新的文献求助10
16秒前
顺心纸鹤发布了新的文献求助10
18秒前
100发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
21秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786934
求助须知:如何正确求助?哪些是违规求助? 3332593
关于积分的说明 10256397
捐赠科研通 3047840
什么是DOI,文献DOI怎么找? 1672734
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271