Enhanced LiteHRNet based sheep weight estimation using RGB-D images

人工智能 估计 卷积神经网络 RGB颜色模型 人工神经网络 机器学习 计算机科学 工程类 系统工程
作者
Chong He,Yongliang Qiao,Rui Mao,Mei Li,Meili Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:206: 107667-107667 被引量:36
标识
DOI:10.1016/j.compag.2023.107667
摘要

Sheep farming is a strategic sector of livestock husbandry, and its production has large market demand in many countries. The live weight of sheep provides important information about the health state and the time point for marketing. Manual weighing sheep is time-consuming for farmers even with the help of a ground scale. With the development of Artificial Intelligence (AI) and smart sensors, non-contact sheep weighing methods have gradually been used to estimate weight. However, the performance of prior studies tends to degenerate with varying postures and light conditions in practical natural environments. In this study, we propose a sheep live weight estimation approach based on LiteHRNet (a Lightweight High-Resolution Network) using RGB-D images. Class Activation Mapping (CAM) guided the design of efficient network heads embracing visual explanation and applicability in practical natural environments. Experiments are conducted on our challenging dataset (of 726 sheep RGB-D images, weight range between 19.5 to 94 kg). Comparative experiment results reveal that the lightweight Convolutional Neural Network (CNN) model trained on RGB-D images can reach an acceptable weight estimation result, Mean Average Percentage Error (MAPE) is 14.605% (95% confidence interval: [13.821%, 15.390%], t test) with only 1.06M parameters. Our works can be viewed as preliminary work that confirms the ability to use lightweight CNNs for sheep weight estimation on RGB-D data. The results of this study are potential to develop an embedded device to automatically estimate sheep live weight and would contribute to the development of precision livestock farming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
希望天下0贩的0应助KAOKAO采纳,获得10
1秒前
1秒前
我是老大应助yandq采纳,获得10
1秒前
2秒前
xue发布了新的文献求助10
3秒前
3秒前
听枫发布了新的文献求助10
3秒前
阿克图尔斯·蒙斯克完成签到,获得积分10
4秒前
超级幼旋应助科研通管家采纳,获得150
4秒前
完美思菱发布了新的文献求助10
4秒前
Hilda007应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
七月落雪发布了新的文献求助20
5秒前
夜莺应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
夜莺应助科研通管家采纳,获得10
5秒前
海蓝云天应助科研通管家采纳,获得30
5秒前
王思聪应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
灿烂千阳完成签到,获得积分10
6秒前
辉辉发布了新的文献求助20
6秒前
ZH发布了新的文献求助30
7秒前
7秒前
HY发布了新的文献求助10
7秒前
周凡淇发布了新的文献求助10
7秒前
Peng完成签到,获得积分10
8秒前
研友_n0DG7n完成签到,获得积分10
8秒前
9秒前
矮小的凡阳完成签到,获得积分10
11秒前
苹果完成签到,获得积分20
12秒前
GPTea应助洪汉采纳,获得100
13秒前
迷人冥王星完成签到,获得积分10
14秒前
HY完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073082
求助须知:如何正确求助?哪些是违规求助? 4293232
关于积分的说明 13377905
捐赠科研通 4114645
什么是DOI,文献DOI怎么找? 2253057
邀请新用户注册赠送积分活动 1257880
关于科研通互助平台的介绍 1190739