The enhancer landscape predetermines the skeletal regeneration capacity of stromal cells

间质细胞 细胞生物学 软骨内骨化 生物 再生(生物学) 转录因子 转分化 移植 间充质干细胞 软骨 干细胞 免疫学 癌症研究 医学 解剖 遗传学 内科学 基因
作者
Sarah Hochmann,Kristy Ou,Rodolphe Poupardin,Michaela Mittermeir,Martin Textor,Salaheddine Ali,Martin Wolf,Agnes Ellinghaus,Dorit Jacobi,Juri A. J. Elmiger,Samantha Donsante,Mara Riminucci,Richard Schäfer,Uwe Kornak,Oliver Klein,Katharina Schallmoser,Katharina Schmidt‐Bleek,Georg N. Duda,Julia K. Polansky,Sven Geißler
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science]
卷期号:15 (688) 被引量:25
标识
DOI:10.1126/scitranslmed.abm7477
摘要

Multipotent stromal cells are considered attractive sources for cell therapy and tissue engineering. Despite numerous experimental and clinical studies, broad application of stromal cell therapeutics is not yet emerging. A major challenge is the functional diversity of available cell sources. Here, we investigated the regenerative potential of clinically relevant human stromal cells from bone marrow (BMSCs), white adipose tissue, and umbilical cord compared with mature chondrocytes and skin fibroblasts in vitro and in vivo. Although all stromal cell types could express transcription factors related to endochondral ossification, only BMSCs formed cartilage discs in vitro that fully regenerated critical-size femoral defects after transplantation into mice. We identified cell type–specific epigenetic landscapes as the underlying molecular mechanism controlling transcriptional stromal differentiation networks. Binding sites of commonly expressed transcription factors in the enhancer and promoter regions of ossification-related genes, including Runt and bZIP families, were accessible only in BMSCs but not in extraskeletal stromal cells. This suggests an epigenetically predetermined differentiation potential depending on cell origin that allows common transcription factors to trigger distinct organ-specific transcriptional programs, facilitating forward selection of regeneration-competent cell sources. Last, we demonstrate that viable human BMSCs initiated defect healing through the secretion of osteopontin and contributed to transient mineralized bone hard callus formation after transplantation into immunodeficient mice, which was eventually replaced by murine recipient bone during final tissue remodeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助泪雨煊采纳,获得10
刚刚
lupin完成签到,获得积分10
刚刚
Ava应助ask采纳,获得10
1秒前
如意草丛发布了新的文献求助10
1秒前
2秒前
小琪猪发布了新的文献求助10
2秒前
迷路诗云发布了新的文献求助30
2秒前
重要的向露完成签到,获得积分20
3秒前
chichenglin发布了新的文献求助10
3秒前
可积完成签到,获得积分10
3秒前
洽洽瓜子shine完成签到,获得积分10
3秒前
秒秒完成签到,获得积分10
4秒前
深情安青应助xixi采纳,获得10
4秒前
yimi发布了新的文献求助10
5秒前
5秒前
WFLLL完成签到,获得积分10
5秒前
Elexmy发布了新的文献求助10
5秒前
落叶应助凶狠的文龙采纳,获得10
5秒前
搜集达人应助Qzy采纳,获得10
6秒前
可爱的函函应助马旭辉采纳,获得10
6秒前
6秒前
7秒前
秒秒发布了新的文献求助10
7秒前
超级白昼完成签到,获得积分10
7秒前
JamesPei应助survivaluu采纳,获得10
7秒前
7秒前
研友_LwlRen完成签到,获得积分10
8秒前
zbb发布了新的文献求助10
9秒前
科研通AI5应助黄晃晃采纳,获得10
9秒前
9秒前
小琪猪完成签到,获得积分10
9秒前
YH2完成签到,获得积分10
9秒前
Zfy关注了科研通微信公众号
9秒前
10秒前
10秒前
我是老大应助挚zhi采纳,获得10
10秒前
10秒前
坤坤发布了新的文献求助10
12秒前
研友_LwlRen发布了新的文献求助10
12秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789121
求助须知:如何正确求助?哪些是违规求助? 3334252
关于积分的说明 10268466
捐赠科研通 3050588
什么是DOI,文献DOI怎么找? 1674046
邀请新用户注册赠送积分活动 802471
科研通“疑难数据库(出版商)”最低求助积分说明 760621