Measuring Surface Characteristics in Sustainable Machining of Titanium Alloys Using Deep Learning-Based Image Processing

机械加工 材料科学 图像处理 钛合金 冶金 曲面(拓扑) 人工智能 计算机视觉 计算机科学 图像(数学) 机械工程 工程类 数学 几何学 合金
作者
Nimel Sworna Ross,C. Sherin Shibi,Sithara Mohamed Mustafa,Munish Kumar Gupta,Mehmet Erdi Korkmaz,Vishal S. Sharma,Zhixiong Li
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (12): 13629-13639 被引量:28
标识
DOI:10.1109/jsen.2023.3269529
摘要

A crucial method of maintenance in the manufacturing industry is machine vision-based fault diagnostics and condition monitoring of machine tools. The friction that occurs between the tool and the workpiece has a greater influence on the surface properties of the material. Effective problem diagnosis is necessary for machine systems to continue operations safely. Data-driven approaches have recently exhibited great promise for intelligent fault diagnosis. Unfortunately, the data collected under real-world conditions may be imbalanced, making diagnosis difficult. In dry, minimum quantity lubrication (MQL), and cryogenic circumstances, the method of failure detection of the proposed design is novel. The purpose of this interrogation is to evaluate the roughness profiles obtained from the machined surfaces and class separation. Markov transition field (MTF) is adopted to encode the surface profiles. In addition to this, conditional generative adversarial network (CGAN) for augmentation and bidirectional long-short term memory (BLSTM), multilayer perceptron (MLP), and 2-D-convolutional neural network (CNN) models are used for surface profile classification and correlation with process parameters. According to the study's finding, the 2-D-CNN was significantly more accurate than the models in predicting surface profiles, with an average accuracy of above 99.6% in both training and testing. In the limelight, the suggested approach can demonstrate to be quite useful for categorizing and proposing appropriate machining circumstances, specifically in situations with minimal data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过时的电灯胆完成签到 ,获得积分10
刚刚
1秒前
tRNA完成签到 ,获得积分10
2秒前
研友_LOomaL发布了新的文献求助30
2秒前
小苏发布了新的文献求助10
3秒前
4秒前
陈宇是傻卵完成签到 ,获得积分10
6秒前
野草发布了新的文献求助10
8秒前
14秒前
研友_LBr1lL应助aaaaarfv采纳,获得10
15秒前
香蕉觅云应助alexysw采纳,获得10
15秒前
852应助aaaaarfv采纳,获得10
15秒前
上官若男应助aaaaarfv采纳,获得10
15秒前
JamesPei应助aaaaarfv采纳,获得10
15秒前
香蕉觅云应助aaaaarfv采纳,获得10
15秒前
慕青应助aaaaarfv采纳,获得10
15秒前
Orange应助aaaaarfv采纳,获得10
15秒前
酷波er应助aaaaarfv采纳,获得10
15秒前
15秒前
在水一方应助小魏采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
17秒前
田様应助科研通管家采纳,获得10
17秒前
ED应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得10
17秒前
开心浩阑应助科研通管家采纳,获得20
17秒前
CAOHOU应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
18秒前
19秒前
20秒前
金金钟完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
伊念发布了新的文献求助10
22秒前
alexysw完成签到,获得积分20
23秒前
天天快乐应助酸奶巧克力采纳,获得10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4032289
求助须知:如何正确求助?哪些是违规求助? 3570891
关于积分的说明 11362721
捐赠科研通 3301320
什么是DOI,文献DOI怎么找? 1817357
邀请新用户注册赠送积分活动 891529
科研通“疑难数据库(出版商)”最低求助积分说明 814266