Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion

人工智能 功能磁共振成像 计算机科学 模式识别(心理学) 可识别性 参数统计 可靠性(半导体) 聚类分析 统计 数据挖掘 机器学习 心理学 数学 物理 量子力学 功率(物理) 神经科学
作者
Yuwei Wang,Xiao Chen,Chao‐Gan Yan
出处
期刊:NeuroImage [Elsevier BV]
卷期号:274: 120089-120089 被引量:22
标识
DOI:10.1016/j.neuroimage.2023.120089
摘要

To embrace big-data neuroimaging, harmonizing the site effect in resting-state functional magnetic resonance imaging (R-fMRI) data fusion is a fundamental challenge. A comprehensive evaluation of potentially effective harmonization strategies, particularly with specifically collected data, has been scarce, especially for R-fMRI metrics. Here, we comprehensively assess harmonization strategies from multiple perspectives, including tests on residual site effect, individual identification, test-retest reliability, and replicability of group-level statistical results, on widely used R-fMRI metrics across various datasets, including data obtained from participants with repetitive measures at different scanners. For individual identifiability (i.e., whether the same subject could be identified across R-fMRI data scanned across different sites), we found that, while most methods decreased site effects, the Subsampling Maximum-mean-distance based distribution shift correction Algorithm (SMA) and parametric unadjusted CovBat outperformed linear regression models, linear mixed models, ComBat series and invariant conditional variational auto-encoder in clustering accuracy. Test-retest reliability was better for SMA and parametric adjusted CovBat than unadjusted ComBat series and parametric unadjusted CovBat in the number of overlapped voxels. At the same time, SMA was superior to the latter in replicability in terms of the Dice coefficient and the scale of brain areas showing sex differences reproducibly observed across datasets. Furthermore, SMA better detected reproducible sex differences of ALFF under the site-sex confounded situation. Moreover, we designed experiments to identify the best target site features to optimize SMA identifiability, test-retest reliability, and stability. We noted both sample size and distribution of the target site matter and introduced a heuristic formula for selecting the target site. In addition to providing practical guidelines, this work can inform continuing improvements and innovations in harmonizing methodologies for big R-fMRI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现实的飞风完成签到 ,获得积分10
刚刚
5秒前
6秒前
852应助jxx采纳,获得10
7秒前
8秒前
神勇的若灵完成签到,获得积分10
8秒前
527完成签到,获得积分10
10秒前
YY发布了新的文献求助10
10秒前
11秒前
13秒前
安安发布了新的文献求助10
15秒前
Vicky完成签到,获得积分10
15秒前
科研通AI5应助Bressanone采纳,获得10
16秒前
英姑应助YY采纳,获得10
17秒前
淡墨完成签到,获得积分10
17秒前
慕青应助zs采纳,获得10
20秒前
20秒前
星辰大海应助有魅力的井采纳,获得30
22秒前
酷波er应助安安采纳,获得10
23秒前
27秒前
Air云完成签到,获得积分10
29秒前
30秒前
小小完成签到,获得积分10
30秒前
31秒前
无足鸟完成签到,获得积分10
31秒前
32秒前
kwen完成签到 ,获得积分10
33秒前
racill发布了新的文献求助20
34秒前
35秒前
zs发布了新的文献求助10
36秒前
怡然冷安完成签到,获得积分10
38秒前
斯文败类应助萤火虫采纳,获得10
44秒前
无奈的豆沙包完成签到 ,获得积分10
45秒前
科研通AI2S应助qfby采纳,获得10
48秒前
SeliqAq完成签到,获得积分10
48秒前
邓德亨卓汲完成签到,获得积分10
49秒前
He发布了新的文献求助10
50秒前
50秒前
zs完成签到,获得积分10
51秒前
今后应助wdb采纳,获得10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781847
求助须知:如何正确求助?哪些是违规求助? 3327435
关于积分的说明 10231205
捐赠科研通 3042315
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758808