材料科学
光电子学
微加工
基质(水族馆)
中间层
图层(电子)
转印
半导体器件
晶体管
聚合物基片
纳米技术
电气工程
蚀刻(微加工)
制作
复合材料
医学
海洋学
替代医学
工程类
病理
电压
地质学
作者
Brian P. Downey,Shawn Mack,Andy Xie,D. S. Katzer,Andrew C. Lang,James G. Champlain,Yu Cao,Neeraj Nepal,Tyler A. Growden,Vikrant J. Gokhale,Matthew T. Hardy,Edward Beam,Cathy Lee,David J. Meyer
标识
DOI:10.1109/ted.2023.3269006
摘要
Here, we use the micro-transfer printing technique to demonstrate the device-level heterogeneous integration of two solid-state RF device technologies on the same interposer: GaN and GaAs high-electron-mobility transistors. The devices are released from their growth substrate using an epitaxial sacrificial layer while a thin polymer adhesion layer facilitates a strong bond between the target substrate and the compound semiconductor devices, allowing for post-transfer microfabrication processing. Transmission electron microscopy reveals no voids at the device/interposer interface and a polymer adhesion layer thickness of 5 ± 2 nm. No significant degradation in dc electrical characteristics is observed after device transfer for either device technology. Improvement in thermal performance of GaN devices was demonstrated when transferred to a diamond substrate, even with the thin polymer adhesion layer at the device/interposer interface, illustrating a pathway for enhanced thermal management for GaN and other high-output-power density semiconductor technologies. The ability to combine various solid-state technologies at the device level with high density provides an approach to meet next-generation demands for RF and mixed-signal circuits.
科研通智能强力驱动
Strongly Powered by AbleSci AI