A framework of deep learning networks provides expert-level accuracy for the detection and prognostication of pulmonary arterial hypertension

医学 心脏病学 内科学 危险系数 肺动脉高压 法洛四联症 肺动脉 比例危险模型 置信区间 心脏病
作者
Gerhard‐Paul Diller,Maria Luisa Benesch Vidal,Aleksander Kempny,Ken Kubota,Li Wei,Konstantinos Dimopoulos,Alexandra Arvanitaki,Astrid E. Lammers,Stephen J. Wort,Helmut Baumgartner,Stefan Orwat,Michael Α. Gatzoulis
出处
期刊:European Journal of Echocardiography [Oxford University Press]
卷期号:23 (11): 1447-1456 被引量:3
标识
DOI:10.1093/ehjci/jeac147
摘要

Abstract Aims To test the hypothesis that deep learning (DL) networks reliably detect pulmonary arterial hypertension (PAH) and provide prognostic information. Methods and results Consecutive patients with PAH, right ventricular (RV) dilation (without PAH), and normal controls were included. An ensemble of deep convolutional networks incorporating echocardiographic views and estimated RV systolic pressure (RVSP) was trained to detect (invasively confirmed) PAH. In addition, DL-networks were trained to segment cardiac chambers and extracted geometric information throughout the cardiac cycle. The ability of DL parameters to predict all-cause mortality was assessed using Cox-proportional hazard analyses. Overall, 450 PAH patients, 308 patients with RV dilatation (201 with tetralogy of Fallot and 107 with atrial septal defects) and 67 normal controls were included. The DL algorithm achieved an accuracy and sensitivity of detecting PAH on a per patient basis of 97.6 and 100%, respectively. On univariable analysis, automatically determined right atrial area, RV area, RV fractional area change, RV inflow diameter and left ventricular eccentricity index (P < 0.001 for all) were significantly related to mortality. On multivariable analysis DL-based RV fractional area change (P < 0.001) and right atrial area (P = 0.003) emerged as independent predictors of outcome. Statistically, DL parameters were non-inferior to measures obtained manually by expert echocardiographers in predicting prognosis. Conclusion The study highlights the utility of DL algorithms in detecting PAH on routine echocardiograms irrespective of RV dilatation. The algorithms outperform conventional echocardiographic evaluation and provide prognostic information at expert-level. Therefore, DL methods may allow for improved screening and optimized management of PAH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BigKang发布了新的文献求助10
3秒前
独特觅儿完成签到,获得积分10
4秒前
4秒前
luckbin发布了新的文献求助10
5秒前
5秒前
6秒前
顺利毕业完成签到 ,获得积分10
6秒前
MIA903完成签到 ,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
刻苦的幻巧完成签到 ,获得积分10
13秒前
桐桐应助yeyeye采纳,获得10
15秒前
安安完成签到 ,获得积分10
19秒前
19秒前
20秒前
21秒前
华仔应助儒雅天德采纳,获得10
22秒前
22秒前
爱吃冻梨发布了新的文献求助10
23秒前
Garfieldlilac发布了新的文献求助10
24秒前
芈冖完成签到,获得积分10
25秒前
科研小白完成签到,获得积分10
25秒前
26秒前
fox完成签到 ,获得积分10
26秒前
Guanpgt完成签到,获得积分10
26秒前
小西米发布了新的文献求助10
27秒前
27秒前
在水一方应助那日迈采纳,获得10
27秒前
28秒前
星辰大海应助追寻的元灵采纳,获得10
31秒前
zho发布了新的文献求助10
31秒前
绛仙旧友完成签到,获得积分10
31秒前
情怀应助爱吃冻梨采纳,获得10
32秒前
研友_RLNzvL完成签到,获得积分10
33秒前
34秒前
量子星尘发布了新的文献求助10
35秒前
开放访天完成签到 ,获得积分10
37秒前
37秒前
37秒前
Santiago完成签到,获得积分10
38秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3876276
求助须知:如何正确求助?哪些是违规求助? 3418855
关于积分的说明 10710724
捐赠科研通 3143480
什么是DOI,文献DOI怎么找? 1734384
邀请新用户注册赠送积分活动 836767
科研通“疑难数据库(出版商)”最低求助积分说明 782783