A framework of deep learning networks provides expert-level accuracy for the detection and prognostication of pulmonary arterial hypertension

医学 心脏病学 内科学 危险系数 肺动脉高压 法洛四联症 肺动脉 比例危险模型 置信区间 心脏病
作者
Gerhard‐Paul Diller,Maria Luisa Benesch Vidal,Aleksander Kempny,Kana Kubota,Wei Li,Konstantinos Dimopoulos,Alexandra Arvanitaki,Astrid E. Lammers,Stephen J. Wort,Helmut Baumgartner,Stefan Orwat,Michael Α. Gatzoulis
出处
期刊:European Journal of Echocardiography [Oxford University Press]
卷期号:23 (11): 1447-1456 被引量:21
标识
DOI:10.1093/ehjci/jeac147
摘要

To test the hypothesis that deep learning (DL) networks reliably detect pulmonary arterial hypertension (PAH) and provide prognostic information.Consecutive patients with PAH, right ventricular (RV) dilation (without PAH), and normal controls were included. An ensemble of deep convolutional networks incorporating echocardiographic views and estimated RV systolic pressure (RVSP) was trained to detect (invasively confirmed) PAH. In addition, DL-networks were trained to segment cardiac chambers and extracted geometric information throughout the cardiac cycle. The ability of DL parameters to predict all-cause mortality was assessed using Cox-proportional hazard analyses. Overall, 450 PAH patients, 308 patients with RV dilatation (201 with tetralogy of Fallot and 107 with atrial septal defects) and 67 normal controls were included. The DL algorithm achieved an accuracy and sensitivity of detecting PAH on a per patient basis of 97.6 and 100%, respectively. On univariable analysis, automatically determined right atrial area, RV area, RV fractional area change, RV inflow diameter and left ventricular eccentricity index (P < 0.001 for all) were significantly related to mortality. On multivariable analysis DL-based RV fractional area change (P < 0.001) and right atrial area (P = 0.003) emerged as independent predictors of outcome. Statistically, DL parameters were non-inferior to measures obtained manually by expert echocardiographers in predicting prognosis.The study highlights the utility of DL algorithms in detecting PAH on routine echocardiograms irrespective of RV dilatation. The algorithms outperform conventional echocardiographic evaluation and provide prognostic information at expert-level. Therefore, DL methods may allow for improved screening and optimized management of PAH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CAOHOU应助酷酷煎饼采纳,获得10
刚刚
1秒前
NexusExplorer应助子车定帮采纳,获得10
1秒前
1秒前
战晓完成签到,获得积分10
3秒前
5秒前
Huang完成签到,获得积分10
5秒前
彩色大碗完成签到,获得积分10
6秒前
哈哈哈完成签到,获得积分20
6秒前
鞠隐完成签到,获得积分10
6秒前
cheire发布了新的文献求助10
7秒前
9秒前
9秒前
核桃发布了新的文献求助10
10秒前
Ava应助咳咳咳采纳,获得10
11秒前
11秒前
秋天的童话完成签到,获得积分20
11秒前
FashionBoy应助小王同学采纳,获得10
12秒前
星辰大海应助Suimy采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
6666666发布了新的文献求助10
13秒前
科研通AI2S应助哈哈哈采纳,获得10
14秒前
wydspn完成签到,获得积分10
15秒前
博士伦666完成签到 ,获得积分10
15秒前
15秒前
16秒前
极品小亮完成签到,获得积分10
17秒前
liu完成签到,获得积分10
18秒前
18秒前
king_creole完成签到,获得积分10
19秒前
孔雀吃披萨完成签到,获得积分10
23秒前
cj关注了科研通微信公众号
24秒前
轻松半邪发布了新的文献求助10
24秒前
25秒前
lyy完成签到 ,获得积分10
26秒前
Santiago完成签到,获得积分10
28秒前
上官若男应助科研通管家采纳,获得10
28秒前
丘比特应助科研通管家采纳,获得10
28秒前
SciGPT应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Further Studies on the Gold-Catalyzed Oxidative Domino Cyclization/Cycloaddition to Give Polyfunctional Tetracycles 400
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4297602
求助须知:如何正确求助?哪些是违规求助? 3823117
关于积分的说明 11969095
捐赠科研通 3464807
什么是DOI,文献DOI怎么找? 1900408
邀请新用户注册赠送积分活动 948399
科研通“疑难数据库(出版商)”最低求助积分说明 850752