A novel neural network and grey correlation analysis method for computation of the heat transfer limit of a loop heat pipe (LHP)

人工神经网络 聚光镜(光学) 传热 传热系数 回路热管 数据集 极限(数学) 前馈神经网络 试验数据 乙状窦函数 计算机科学 数学 人工智能 热力学 热管 物理 数学分析 光学 程序设计语言 光源
作者
Xuexiang Liu,Haowen Liu,Xudong Zhao,Zhonghe Han,Yu Cui,Min Yu
出处
期刊:Energy [Elsevier BV]
卷期号:259: 124830-124830 被引量:15
标识
DOI:10.1016/j.energy.2022.124830
摘要

A loop heat pipe (LHP) has the advantages of larger heat transfer capacity and anti-gravity operational performance. The current prediction models for LHP heat transfer capacity have the difficulties in popularization of data volume and determination of accurate parametrical data, leading to the uncertain and varying outcomes that are inconsistent and away from reality. To address these challenges, this paper developed a first-of-its-kind big-data-driven LHP heat transfer limit prediction model by employing the neural network and grey correlation analysis method, which have advantages of high precision and large data volume. A double-layer feedforward neural network with sigmoid hidden neuron and linear output neuron was constructed to predict the heat transfer limit of the LHP. The grey scale analysis is applied to select the variables with correlation coefficient greater than 0.5, thus giving the clear identification of the both input parameters (e.g. refrigerant temperature, filling liquid quantity, height difference between evaporator and condenser, and number of heat pipe array) and output ones (heat transfer limit). The previously validated LHP heat transfer limit calculation model is used to calculate the heat transfer limit corresponding to the selected parameters, thus formulating 1,010,038 sets of data points. Of those calculated datasets, 707,026 (70% of data) are treated as a training set, 151,506 (15% of data) as a verification set, and 151,506 groups of data (15% of data) as the test sets for training. After several optimization and debugging, the number of hidden layer neurons is determined to be 100. The correlation coefficient (R), mean square error (MSE) and mean relative error (MRE) are 0.9997, 52.7 and 0.32% respectively, all of which are within reasonable accuracy range. The results show that the model has good prediction accuracy and consistence and is an effective tool to characterize and optimize the LHP in various application synergies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一切都会好起来的完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
阿虎完成签到,获得积分20
3秒前
GEZHE完成签到,获得积分10
3秒前
3秒前
4秒前
ZHY发布了新的文献求助80
4秒前
ZHY发布了新的文献求助10
4秒前
4秒前
ZHY发布了新的文献求助10
5秒前
5秒前
ZHY发布了新的文献求助10
5秒前
ZHY发布了新的文献求助10
5秒前
ZHY发布了新的文献求助10
5秒前
ZHY发布了新的文献求助10
5秒前
ZHY发布了新的文献求助10
5秒前
ZHY发布了新的文献求助10
5秒前
ZHY发布了新的文献求助10
5秒前
ZHY发布了新的文献求助80
5秒前
ZHY发布了新的文献求助200
6秒前
ZHY发布了新的文献求助10
6秒前
ZHY发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
ZHY发布了新的文献求助10
6秒前
小熊跳舞完成签到,获得积分10
6秒前
科研助手6应助aaac采纳,获得10
6秒前
ZHY发布了新的文献求助100
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
x夏天完成签到,获得积分10
8秒前
现代友桃完成签到,获得积分10
10秒前
Ava应助陈JY采纳,获得10
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805267
求助须知:如何正确求助?哪些是违规求助? 3350231
关于积分的说明 10348060
捐赠科研通 3066150
什么是DOI,文献DOI怎么找? 1683567
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214