清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Psychometric property and measurement invariance of internet addiction test: the effect of socio-demographic and internet use variables

拉什模型 心理学 验证性因素分析 差异项目功能 互联网 测量不变性 多向拉希模型 比例(比率) 结构效度 项目反应理论 上瘾 考试(生物学) 探索性因素分析 临床心理学 心理测量学 结构方程建模 统计 发展心理学 计算机科学 数学 精神科 万维网 物理 古生物学 生物 量子力学
作者
Xi Lu,Kee Jiar Yeo,Fang Guo,Zhenqing Zhao,Ou Wu
出处
期刊:BMC Public Health [Springer Nature]
卷期号:22 (1) 被引量:7
标识
DOI:10.1186/s12889-022-13915-1
摘要

Abstract Background According to the validation literature on items of Young’s Internet Addiction Test (IAT), this study rephrased disputable items to improve the psychometric properties of this Chinese version of IAT and identify the presence of differential item function (DIF) among demographic and Internet use factors; detect the effect of demographic and Internet use factors on IAT after adjusting for DIF. Methods An online questionnaire was distributed to college students in Zhe Jiang province in two stage. The 1st phase study collected 384 valid responses to examine the quality of IAT items by using Rasch Model analysis and exploring factor analysis (EFA). The online questionnaire was modified according to the 1st phase study and distributed online for the 2nd phase study which collected a total of 1131 valid responses. The 2nd phase study applied confirmatory factor analysis (CFA) and a multiple indicator multiple causes (MIMIC) model to verify the construct of IAT, potential effect of covariates on IAT latent factors, as well as the effect of differential item functioning (DIF). Results Rasch model analysis in the 1st phase study indicated a 5-point rating scale was performed better, no sever misfit was found on item. The overall property of Chinese version IAT with the 5-point scale was good to excellent person and item separation (2.66 and 6.86). A three-factor model was identified by EFA. In the 2nd phase study, IAT 13 were detected with DIF for gender in MIMIC model. After correcting DIF effect, the significant demographic and Internet use factors on IAT were time spent online per day, year 3, year 2, general users. Conclusion Item improvement was efficient that the problematic items found in literature was performed good in this study. The overall psychometric property of this Chinese version IAT was good with limited DIF effect in one item. Item improvement on IAT13 was encouraged in the future study to avoid gender bias and benefit for epidemiology on PIU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行走的猫完成签到 ,获得积分10
4秒前
kisslll完成签到 ,获得积分10
8秒前
23秒前
CipherSage应助二东采纳,获得10
25秒前
勤恳缘分发布了新的文献求助10
26秒前
31秒前
amy完成签到,获得积分10
32秒前
愤怒的念蕾完成签到,获得积分10
33秒前
二东发布了新的文献求助10
36秒前
kk完成签到 ,获得积分10
48秒前
49秒前
Owen应助勤恳缘分采纳,获得30
51秒前
Unlisted发布了新的文献求助10
55秒前
qiandi完成签到 ,获得积分10
1分钟前
ywq完成签到,获得积分10
1分钟前
勤恳缘分完成签到,获得积分10
1分钟前
佳言2009完成签到 ,获得积分10
1分钟前
顾矜应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
Unlisted完成签到,获得积分10
1分钟前
1分钟前
我是笨蛋完成签到 ,获得积分10
1分钟前
高兴的妙旋完成签到,获得积分20
1分钟前
Akim应助刘霆勋采纳,获得50
1分钟前
科研通AI2S应助平常安采纳,获得10
2分钟前
小刘同学发布了新的文献求助10
2分钟前
Rocky完成签到 ,获得积分10
2分钟前
淡然觅荷完成签到 ,获得积分10
2分钟前
踏实道之完成签到,获得积分10
2分钟前
浮游应助小刘同学采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
孤独的从彤完成签到 ,获得积分10
3分钟前
mc应助小刘同学采纳,获得10
3分钟前
123完成签到,获得积分10
3分钟前
kmzzy完成签到,获得积分10
3分钟前
Tong完成签到,获得积分0
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
我是老大应助努力小周采纳,获得10
3分钟前
俊逸的盛男完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470493
求助须知:如何正确求助?哪些是违规求助? 4573333
关于积分的说明 14338307
捐赠科研通 4500375
什么是DOI,文献DOI怎么找? 2465736
邀请新用户注册赠送积分活动 1454070
关于科研通互助平台的介绍 1428755