材料科学
质子
微通道
通量
钽
占空比
中子通量
中子
钨
核工程
氢
散裂
沉积(地质)
核物理学
辐照
原子物理学
化学
物理
电压
纳米技术
工程类
古生物学
有机化学
冶金
生物
量子力学
沉积物
作者
Qi Ding,Ulrich Rücker,Paul Zakalek,Johannes Baggemann,J. Wolters,Jingjing Li,Y. Beßler,Thomas Gutberlet,Thomas Brückel,Ghaleb Natour
标识
DOI:10.1016/j.nima.2022.167508
摘要
An optimized neutron producing tantalum target with an optimized internal microchannel cooling was developed for a 70 MeV proton beam with a peak current of 100 mA, a duty cycle of 1.43% and an average power of 100 kW on a target surface area of 100 cm 2. In this work a target with microchannel cooling structure is described which matches with the proton’s energy to minimize hydrogen implantation and to produce energy deposition with optimum homogeneity inside the target to minimize the thermal stresses. For the purpose of getting an optimal target design, the investigations of energy deposition, proton fluence, the spatial distribution of (p, n) reactions and the spatial distribution of stopping protons of the target with different microchannel geometries were performed with the particle transport code FLUKA. The resulting design produces a homogeneous proton fluence and energy deposition without hot spots. Furthermore, only 4.4% of the impinging protons accumulate in the metal target, which significantly decreases the risk of hydrogen embrittlement and blistering.
科研通智能强力驱动
Strongly Powered by AbleSci AI