A genetic optimisation and iterative reconstruction framework for sparse multi-dimensional diffusion-relaxation correlation MRI

磁共振弥散成像 计算机科学 放松(心理学) 扫描仪 蒙特卡罗方法 体素 算法 迭代重建 压缩传感 图像分辨率 动态增强MRI 拉普拉斯变换 磁共振成像 采样(信号处理) 遗传算法 相关性 人工智能 计算机视觉 数学 机器学习 放射科 统计 滤波器(信号处理) 数学分析 社会心理学 医学 心理学 几何学
作者
Fangrong Zong,Lixian Wang,Huabing Liu,Bing Xue,Ruiliang Bai,Yong Liu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:: 108508-108508
标识
DOI:10.1016/j.compbiomed.2024.108508
摘要

Multi-dimensional diffusion-relaxation correlation (DRC) magnetic resonance imaging (MRI) techniques have recently been developed to investigate tissue microstructures. Sub-voxel tissue heterogeneity is resolved from the local correlation distributions of relaxation time and molecular diffusivity. However, the implementation of these techniques considerably increases the total acquisition time, and simply reducing the scan time may be at the expense of detailed structural resolution. To overcome these limitations, an optimised framework was proposed for acquiring microstructural maps of the human brain on a clinically feasible timescale. First, the acquisition parameters of the multi-dimensional DRC MRI method were sparsely optimised using a genetic algorithm with a fitness function according to the spectral resolution of the correlation map, hardware requirements, and total scan time. Next, the acquired DRC MRI data were processed using a proposed numerical algorithm based on the dynamic inverse Laplace transform (ILT). Prior knowledge from one-dimensional data was then utilised in the iterative procedure to improve the spectral resolution. Finally, the proposed framework was validated using Monte Carlo simulations and experimental data acquired from healthy participants on an MRI scanner. The results demonstrated that the suggested approach is feasible for offering high-resolution DRC maps that correspond to distinct microstructures with a limited amount of optimised acquisition data from two-dimensional DRC sampling space. By significantly reducing scan time while retaining structural resolution, this approach may enable multi-dimensional DRC MRI to be more widely used for quantitative evaluation in biological and medical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TP完成签到,获得积分10
刚刚
2秒前
TaooSHuu发布了新的文献求助10
2秒前
乐乐应助俊逸鸣凤采纳,获得10
2秒前
3秒前
小花排草应助Jupiter 1234采纳,获得50
5秒前
NexusExplorer应助牧百川采纳,获得10
6秒前
6秒前
maorongfu456完成签到,获得积分10
7秒前
9秒前
9秒前
xunxunmimi发布了新的文献求助30
10秒前
10秒前
10秒前
10秒前
俊逸鸣凤完成签到,获得积分20
12秒前
熊熊发布了新的文献求助10
12秒前
12秒前
鹏飞完成签到,获得积分10
12秒前
清秀谷南完成签到,获得积分10
12秒前
能干冰菱发布了新的文献求助10
13秒前
小蘑菇应助刘春林采纳,获得10
15秒前
小乔同学发布了新的文献求助10
18秒前
科研通AI5应助淡然元珊采纳,获得10
18秒前
18秒前
Owen应助能干冰菱采纳,获得10
19秒前
香蕉觅云应助sssss采纳,获得10
22秒前
niulugai完成签到,获得积分10
24秒前
26秒前
28秒前
深情安青应助是江江哥啊采纳,获得10
29秒前
可靠小狗发布了新的文献求助10
32秒前
淡然元珊发布了新的文献求助10
33秒前
33秒前
伯赏思山完成签到,获得积分10
34秒前
体贴的叛逆者完成签到,获得积分10
35秒前
35秒前
落俗完成签到,获得积分10
35秒前
36秒前
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4170303
求助须知:如何正确求助?哪些是违规求助? 3705934
关于积分的说明 11693477
捐赠科研通 3392063
什么是DOI,文献DOI怎么找? 1860430
邀请新用户注册赠送积分活动 920342
科研通“疑难数据库(出版商)”最低求助积分说明 832657