A subject-specific unsupervised deep learning method for quantitative susceptibility mapping using implicit neural representation

人工智能 定量磁化率图 计算机科学 人工神经网络 模式识别(心理学) 正规化(语言学) 机器学习 磁共振成像 医学 放射科
作者
Ming Zhang,Ruimin Feng,Zhenghao Li,Jie Feng,Qing Wu,Zhiyong Zhang,Chengxin Ma,Jinsong Wu,Fuhua Yan,Chunlei Liu,Yuyao Zhang,Hongjiang Wei
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:95: 103173-103173
标识
DOI:10.1016/j.media.2024.103173
摘要

Quantitative susceptibility mapping (QSM) is an MRI-based technique that estimates the underlying tissue magnetic susceptibility based on phase signal. Deep learning (DL)-based methods have shown promise in handling the challenging ill-posed inverse problem for QSM reconstruction. However, they require extensive paired training data that are typically unavailable and suffer from generalization problems. Recent model-incorporated DL approaches also overlook the non-local effect of the tissue phase in applying the source-to-field forward model due to patch-based training constraint, resulting in a discrepancy between the prediction and measurement and subsequently suboptimal QSM reconstruction. This study proposes an unsupervised and subject-specific DL method for QSM reconstruction based on implicit neural representation (INR), referred to as INR-QSM. INR has emerged as a powerful framework for learning a high-quality continuous representation of the signal (image) by exploiting its internal information without training labels. In INR-QSM, the desired susceptibility map is represented as a continuous function of the spatial coordinates, parameterized by a fully-connected neural network. The weights are learned by minimizing a loss function that includes a data fidelity term incorporated by the physical model and regularization terms. Additionally, a novel phase compensation strategy is proposed for the first time to account for the non-local effect of tissue phase in data consistency calculation to make the physical model more accurate. Our experiments show that INR-QSM outperforms traditional established QSM reconstruction methods and the compared unsupervised DL method both qualitatively and quantitatively, and is competitive against supervised DL methods under data perturbations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞57完成签到,获得积分10
2秒前
耸耸完成签到 ,获得积分10
4秒前
cindy完成签到 ,获得积分10
4秒前
5秒前
墨旱莲完成签到,获得积分10
6秒前
11秒前
大个应助科研混子采纳,获得10
11秒前
肉丸完成签到 ,获得积分10
11秒前
wendinfgmei发布了新的文献求助10
12秒前
凸迩丝儿发布了新的文献求助10
12秒前
12秒前
ElephBali完成签到,获得积分10
13秒前
14秒前
orixero应助畅快的鱼采纳,获得10
15秒前
15秒前
ElephBali发布了新的文献求助10
16秒前
19秒前
凸迩丝儿完成签到,获得积分10
20秒前
τ涛发布了新的文献求助10
21秒前
科研混子发布了新的文献求助10
23秒前
xxxxxxlp完成签到,获得积分10
34秒前
37秒前
贪玩岱周完成签到,获得积分20
38秒前
prim发布了新的文献求助10
39秒前
英姑应助xxxxxxlp采纳,获得10
41秒前
科研助手6应助山水之乐采纳,获得10
47秒前
49秒前
54秒前
54秒前
LLL发布了新的文献求助10
55秒前
英俊的铭应助小熊饼干采纳,获得10
55秒前
南木完成签到,获得积分10
58秒前
周钰波发布了新的文献求助10
1分钟前
叠森完成签到,获得积分10
1分钟前
corazon完成签到,获得积分10
1分钟前
qzh发布了新的文献求助10
1分钟前
cdercder应助幸福采纳,获得10
1分钟前
okk完成签到 ,获得积分10
1分钟前
吴文章完成签到 ,获得积分10
1分钟前
chill完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776440
求助须知:如何正确求助?哪些是违规求助? 3321862
关于积分的说明 10208102
捐赠科研通 3037186
什么是DOI,文献DOI怎么找? 1666565
邀请新用户注册赠送积分活动 797579
科研通“疑难数据库(出版商)”最低求助积分说明 757872