亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Coupling the remote sensing data-enhanced SWAT model with the bidirectional long short-term memory model to improve daily streamflow simulations

水流 联轴节(管道) 期限(时间) 环境科学 中期 遥感 计算机科学 地质学 物理 材料科学 地理 地图学 流域 量子力学 经济 冶金 宏观经济学
作者
Lei Jin,Huazhu Xue,Guotao Dong,Yue Han,Zichuang Li,Yaokang Lian
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:634: 131117-131117 被引量:17
标识
DOI:10.1016/j.jhydrol.2024.131117
摘要

Global climate change has led to an increase in the frequency and scale of extreme weather events worldwide, and there is an urgent need to develop better-performing hydrological models to improve the accuracy of streamflow simulations and to facilitate water resource planning and management. The Soil and Water Assessment Tool (SWAT) has a notable physical foundation and is widely used in hydrological research. However, it uses a simplified vegetation growth model, introducing uncertainty into the simulation results. This study focused on improving the model based on remotely sensed phenological and leaf area index (LAI) data. Phenological data were used to define vegetation dormancy, and the LAI data replaced the corresponding data simulated by the original model. This approach improved the accuracy of the model in describing vegetation dynamics. Then, the enhanced SWAT model was coupled with the bidirectional long short-term memory (BiLSTM) model to validate the simulation of hydrological processes upstream of the Hei River. During model validation, the performance of the enhanced SWAT model in simulating streamflow (R2 = 0.835, NSE = 0.819) was better than that of the original SWAT model (R2 = 0.821, NSE = 0.805). In terms of simulating evapotranspiration, the enhanced SWAT model demonstrated even greater advantages. During the verification period, compared to those of the SWAT model, the R2 and NSE values of the enhanced SWAT model for daily-scale simulations increased from 0.196 and −0.269 to 0.777 and 0.732, respectively. The R2 and NSE values for monthly-scale simulations increased from 0.782 and 0.678 to 0.906 and 0.851, respectively. Simultaneously, the performance levels of two coupling approaches in streamflow prediction were compared, i.e., direct coupling of the original SWAT and BiLSTM models (SWAT-BiLSTM) and coupling of the enhanced SWAT and BiLSTM models (enhanced SWAT-BiLSTM). The results showed that the enhanced SWAT-BiLSTM model always performed better than the SWAT-BiLSTM model during the entire simulation period, especially the enhanced SWAT-BiLSTM model, which could more accurately predict peak streamflow changes. This study demonstrated that coupling an improved physical model with deep learning models could improve the streamflow prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Huzhu应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
14秒前
20秒前
20秒前
颤北斗发布了新的文献求助30
24秒前
33秒前
44秒前
50秒前
酷波er应助烟消云散采纳,获得10
1分钟前
cyclone发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
烟消云散发布了新的文献求助10
2分钟前
2分钟前
2分钟前
阿甘发布了新的文献求助10
2分钟前
打打应助顶刊刺客cc采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
4分钟前
Huzhu应助科研通管家采纳,获得10
4分钟前
4分钟前
满意的伊完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488594
求助须知:如何正确求助?哪些是违规求助? 4587405
关于积分的说明 14413853
捐赠科研通 4518798
什么是DOI,文献DOI怎么找? 2476092
邀请新用户注册赠送积分活动 1461552
关于科研通互助平台的介绍 1434505