Event Analysis in Transmission Systems Using Spatial Temporal Graph Encoder Decoder (STGED)

事件(粒子物理) 计算机科学 人工智能 公制(单位) 数据挖掘 水准点(测量) 编码器 机器学习 工程类 大地测量学 运营管理 量子力学 操作系统 物理 地理
作者
Arman Ahmed,Sajan K. Sadanandan,Shikhar Pandey,Sagnik Basumallik,Anurag K. Srivastava,Yinghui Wu
出处
期刊:IEEE Transactions on Power Systems [Institute of Electrical and Electronics Engineers]
卷期号:38 (6): 5329-5340 被引量:4
标识
DOI:10.1109/tpwrs.2022.3226209
摘要

Phasor Measurement Units (PMUs) are located at different geographic positions in the transmission system, generating measurement data that can be analyzed to monitor and control the power grid. One utilization for such measurement data is monitoring based on machine learning based event analysis in the transmission system, which includes event detection, localization, and classification . The approach developed in this work exploits the latent spatial and temporal features of PMU measurement data for event analysis. (1) For event detection, this research proposes a novel unsupervised "Spatial Temporal Graph Encoder Decoder" (STGED) deep learning model that concurrently/jointly exploits the spatial and temporal features of PMU measurements. STGED further supports downstream unsupervised event localization and classification. (2) For event localization, events are localized by estimating Turbulence and Proximity statistical scores over predicted measurements/output from STGED. (3) For event classification, an unsupervised algorithm is developed with a classification scoring metric that leverages physics informed rules based on the fundamentals of power system. The proposed approach is evaluated on the IEEE test systems and other benchmark systems for diversified event scenarios. Additionally, performance of the developed approach has been compared with other techniques, and validated using real-world industry data. Experimental results show that the proposed approach outperforms other existing techniques for event analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助恋雅颖月采纳,获得10
2秒前
2秒前
我是老大应助默默山槐采纳,获得10
3秒前
Diaory2023完成签到 ,获得积分0
4秒前
跳跃纸飞机完成签到,获得积分10
6秒前
科研通AI5应助岑岑采纳,获得10
7秒前
7秒前
科研通AI5应助cheesejiang采纳,获得10
8秒前
UsxWyc发布了新的文献求助10
8秒前
在水一方应助十七采纳,获得10
8秒前
欢呼幼菱发布了新的文献求助20
9秒前
烟花应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
大腚疯猪应助科研通管家采纳,获得30
10秒前
懦弱的咖啡豆完成签到,获得积分10
10秒前
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
浩二完成签到,获得积分10
12秒前
15秒前
恋雅颖月发布了新的文献求助10
16秒前
18秒前
我是老大应助科研兄采纳,获得10
19秒前
19秒前
Owen应助韵寒禾香采纳,获得10
22秒前
落寞元霜发布了新的文献求助10
24秒前
遇伞完成签到,获得积分10
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802646
求助须知:如何正确求助?哪些是违规求助? 3348268
关于积分的说明 10337419
捐赠科研通 3064257
什么是DOI,文献DOI怎么找? 1682495
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764013