Mapping nonlinear brain dynamics by phase space embedding with fMRI data

相图 计算机科学 嵌入 支持向量机 人工智能 功能磁共振成像 模式识别(心理学) 显著性(神经科学) 非线性系统 规范化(社会学) 物理 神经科学 心理学 社会学 量子力学 人类学 分叉
作者
Zhenhai Zhang,Kaiming Li,Xiaoping Hu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:82: 104521-104521 被引量:1
标识
DOI:10.1016/j.bspc.2022.104521
摘要

The human brain is a complex neurobiological system exhibiting complex nonlinear spatiotemporal dynamics. While functional magnetic resonance imaging (fMRI) has been widely used to study brain activity, whole-brain nonlinear dynamics in fMRI data have not been extensively examined. The present study applied phase space embedding on resting-state fMRI data and characterized their phase space dynamics with the sum of lengths of portrait edges (SE) in the reconstructed phase portrait. The effects of repetition time (TR), bandpass filtering and the added noise power of BOLD signals on the optimal embedding parameters (embedding time delay τ and embedding dimension m) were examined with experimental or simulated fMRI data. Our results show that τ and m vary with the three acquisition parameters. The present method was applied to the autism spectrum disorder dataset from Autism Imaging Data Exchange I to demonstrate its capability in the characterization of abnormal brain dynamics. The resultant SE maps were statistically compared between patients and controls, and the significant differences in SE were fed into a support vector machine (SVM) for classification. A significant increase in SE in the default mode network (DMN) and salience network (SN), as well as the visual network, was found in autistic patients. With the SE features of these regions, our SVM classifier achieved superior accuracy (74.55% with 10-folds cross validation) compared with prior studies, indicating that phase space embedding and SE mapping are promising in characterizing the nonlinear dynamics of the BOLD signal and might be useful for brain biomarker discovery in clinical psychiatry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
科研通AI6应助欢喜的飞双采纳,获得20
刚刚
Zz发布了新的文献求助10
刚刚
1秒前
玩什么翔关注了科研通微信公众号
1秒前
luqian完成签到,获得积分10
1秒前
wwho_O发布了新的文献求助10
1秒前
吃人不眨眼应助hahahah采纳,获得20
2秒前
Fortune发布了新的文献求助10
2秒前
keyan发布了新的文献求助10
2秒前
萧然完成签到,获得积分10
2秒前
xx发布了新的文献求助10
3秒前
aujsdhab发布了新的文献求助40
3秒前
dd发布了新的文献求助10
3秒前
雪白的白柏完成签到,获得积分10
3秒前
3秒前
小于完成签到,获得积分10
4秒前
luqian发布了新的文献求助10
5秒前
研友_LavApn发布了新的文献求助10
5秒前
慕青应助oio778采纳,获得10
5秒前
5秒前
5秒前
5秒前
芽芽豆完成签到 ,获得积分10
5秒前
深情安青应助汪汪采纳,获得10
5秒前
碎星完成签到,获得积分10
6秒前
林夕完成签到,获得积分10
6秒前
bbll完成签到,获得积分10
6秒前
山河星梦完成签到,获得积分10
6秒前
6秒前
Netsky驳回了李健应助
6秒前
冷傲的从雪完成签到 ,获得积分10
6秒前
风清扬应助小洲王先生采纳,获得10
7秒前
7秒前
龙城辞故人完成签到,获得积分10
7秒前
MR_Z完成签到,获得积分10
7秒前
水果完成签到,获得积分10
8秒前
8秒前
iiing完成签到,获得积分10
8秒前
风骨发布了新的文献求助10
9秒前
一路生花发布了新的文献求助10
9秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5503984
求助须知:如何正确求助?哪些是违规求助? 4599428
关于积分的说明 14468893
捐赠科研通 4533443
什么是DOI,文献DOI怎么找? 2484398
邀请新用户注册赠送积分活动 1467564
关于科研通互助平台的介绍 1440327