Normalization Approach by a Reference Material to Improve LC–MS-Based Metabolomic Data Comparability of Multibatch Samples

代谢组学 化学 规范化(社会学) 生物标志物发现 可比性 色谱法 接收机工作特性 线性判别分析 数据集 多元统计 统计 蛋白质组学 数学 生物化学 组合数学 社会学 人类学 基因
作者
Yao Yao,Hui Zhang,Lanyin Tu,Tiantian Yu,Baowei Chen,Peng Huang,Yumin Hu,Tiangang Luan
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:4
标识
DOI:10.1021/acs.analchem.2c04188
摘要

Large cohorts of samples from multiple batches are usually required for global metabolomic studies to characterize the metabolic state of human disease. As such, it is critical to eliminate systematic variation and truly reveal the biologically associated alterations. In this study, we proposed a reference material-based approach (Ref-M) for data correction by liquid chromatography–mass spectrometry and represented by an analysis of multibatch human serum samples. The reference material was generated by mixing serum from healthy donors and distributed to each extraction batch of subject samples. Pooled quality control samples and isotopic internal standards were then applied in each acquisition batch for data quality control. Finally, each metabolite in subject samples was normalized by its counterpart in the reference serum. We demonstrated that Ref-M significantly enhanced the numbers of efficient features and effectively eliminated the batch variation of 522 serum samples of healthy individuals, benign pulmonary nodules, and lung cancer patients. Twenty differential metabolites were identified to distinguish lung cancer from healthy controls in the training set. The discriminant model was validated in an independent data set with an area under the receiver operating characteristics (ROC) curve (AUC) of 0.853. Another 40 serum samples further tested with Ref-M were achieved an AUC of 0.843 by the established model. Our results showed that the reference material-based approach presents the potential to improve the data comparability and precision for biomarker discovery in large-scale metabolomic studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
谦让青完成签到,获得积分10
1秒前
火星上的万天完成签到,获得积分10
1秒前
性感母蟑螂完成签到,获得积分10
1秒前
走之儿完成签到,获得积分10
1秒前
忧郁芹菜完成签到,获得积分20
1秒前
luct发布了新的文献求助10
2秒前
3秒前
昌莆发布了新的文献求助10
3秒前
思源应助敬清秋采纳,获得10
3秒前
3秒前
体贴的冥王星完成签到,获得积分20
4秒前
hero发布了新的文献求助10
4秒前
丘比特应助污术采纳,获得10
4秒前
慕青应助七点采纳,获得10
4秒前
甜甜甜完成签到,获得积分10
4秒前
4秒前
yamo发布了新的文献求助10
4秒前
leekk完成签到,获得积分10
5秒前
5秒前
5秒前
爆米花应助DJM采纳,获得10
5秒前
wdn0411完成签到,获得积分10
5秒前
戊己发布了新的文献求助10
6秒前
NexusExplorer应助络桵采纳,获得10
6秒前
LMDD完成签到,获得积分10
6秒前
看我穿假耐克完成签到,获得积分10
7秒前
christy完成签到,获得积分10
8秒前
8秒前
gdh完成签到,获得积分10
8秒前
fanfan完成签到,获得积分10
8秒前
赘婿应助eee采纳,获得10
8秒前
8秒前
夏青荷发布了新的文献求助10
9秒前
一定长完成签到 ,获得积分10
9秒前
9秒前
月光族应助阿峰采纳,获得10
9秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806414
求助须知:如何正确求助?哪些是违规求助? 3351123
关于积分的说明 10353069
捐赠科研通 3067011
什么是DOI,文献DOI怎么找? 1684232
邀请新用户注册赠送积分活动 809433
科研通“疑难数据库(出版商)”最低求助积分说明 765515