Unstructured Self-Assembled Molecular Lamella Induces Ultrafast Thermal Transfer through a Cathode/Separator Interphase in Lithium-Ion Batteries

材料科学 阴极 锂钴氧化物 界面热阻 单层 化学工程 传热 板层(表面解剖学) 纳米技术 无定形固体 热阻 化学物理 复合材料 锂离子电池 热力学 有机化学 物理化学 功率(物理) 工程类 化学 物理 电池(电)
作者
Jinlong He,Weikang Xian,Lei Tao,Patrick M. Corrigan,Ying Li
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (50): 56268-56279 被引量:1
标识
DOI:10.1021/acsami.2c15718
摘要

Thermal issues associated with lithium-ion batteries (LIBs) can dramatically affect their life cycle and overall performance. However, the effective heat transfer is deeply restrained by the high thermal resistance across the cathode (lithium cobalt oxide, LCO)-separator (polyethylene, PE) interface. This work presents a new approach to tailoring the interfacial thermal resistance, namely, unstructured self-assembled lamella (USAL). Compared to the popular self-assembled monolayers, although the USAL gives a redundant interface and amorphous molecule patterns, it can also provide many benefits, including easy assembly, more thermal bridges, and ready pressurization. Three small organic molecules (SOMs) were assembled into an LCO-PE interface, providing unique functional groups, -NH2, -SH, and -CH3, to illustrate its energy conversion efficiency. Through molecular dynamics simulations, our results show that the USAL can facilitate interfacial heat transfer remarkably. A 3-aminopropyl trimethoxysilane (APTMS)-coated LCO-PE system with 11.4 Å thickness demonstrates the maximum enhancement of thermal conductance, about 320% of the pristine system. Such enhancement is attributed to the developed double heat passages by strong non-bonded interactions across LCO-SOM and PE-SOM interfaces, a tuned temperature field, and high compatibility between SOMs and PE. Importantly, due to SOMs' amorphous morphology, the pressure can be imposed and further enhance the interfacial heat transfer. Results show the improved thermal conductance rises the most for the APTMS-coated LCO-PE system with 11.4 Å thickness at 10 GPa, almost 685% higher than that of the pristine system. The high efficiency of heat transfer comes as a result of the enhanced binding strength across the LCO-SOM and SOM-PE interface, the reduced phonon scattering in PE and SOMs, and the high LCO stiffness. These investigations are expected to provide a new perspective for modulating the heat transfer across the interphase of LIBs and achieve more effective thermal management for the multi-material system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助weiwei采纳,获得10
1秒前
dery完成签到,获得积分10
2秒前
xu807348完成签到,获得积分10
3秒前
3秒前
研友_ZGjQVn完成签到,获得积分10
7秒前
肖肖发布了新的文献求助10
7秒前
10秒前
CodeCraft应助小新爱蜡笔采纳,获得10
11秒前
11秒前
天天快乐应助Taoie采纳,获得10
14秒前
CipherSage应助雪球1248采纳,获得10
15秒前
15秒前
pipm完成签到,获得积分10
16秒前
白智妍发布了新的文献求助10
16秒前
星辰大海应助WN采纳,获得10
18秒前
wanci应助落伍少年采纳,获得10
18秒前
18秒前
寒冷忆曼完成签到,获得积分10
18秒前
cometx发布了新的文献求助10
19秒前
qiuxinhui完成签到,获得积分10
20秒前
怕黑的画板完成签到,获得积分10
21秒前
25秒前
26秒前
27秒前
28秒前
28秒前
大模型应助长白采纳,获得30
29秒前
30秒前
31秒前
白智妍完成签到,获得积分10
32秒前
yushideyu发布了新的文献求助10
32秒前
雾野与晚风完成签到,获得积分10
33秒前
xu807348发布了新的文献求助20
34秒前
35秒前
大模型应助jamin采纳,获得10
36秒前
38秒前
40秒前
英勇大门完成签到,获得积分10
40秒前
田様应助美少女壮士采纳,获得10
40秒前
小二郎应助小蜜峰儿采纳,获得10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3984177
求助须知:如何正确求助?哪些是违规求助? 3527537
关于积分的说明 11236837
捐赠科研通 3265800
什么是DOI,文献DOI怎么找? 1802841
邀请新用户注册赠送积分活动 880631
科研通“疑难数据库(出版商)”最低求助积分说明 808241