Unstructured Self-Assembled Molecular Lamella Induces Ultrafast Thermal Transfer through a Cathode/Separator Interphase in Lithium-Ion Batteries

材料科学 阴极 锂钴氧化物 界面热阻 单层 化学工程 传热 板层(表面解剖学) 纳米技术 无定形固体 热阻 复合材料 锂离子电池 热力学 有机化学 物理化学 功率(物理) 工程类 化学 物理 电池(电)
作者
Jinlong He,Weikang Xian,Lei Tao,Patrick M. Corrigan,Ying Li
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (50): 56268-56279
标识
DOI:10.1021/acsami.2c15718
摘要

Thermal issues associated with lithium-ion batteries (LIBs) can dramatically affect their life cycle and overall performance. However, the effective heat transfer is deeply restrained by the high thermal resistance across the cathode (lithium cobalt oxide, LCO)-separator (polyethylene, PE) interface. This work presents a new approach to tailoring the interfacial thermal resistance, namely, unstructured self-assembled lamella (USAL). Compared to the popular self-assembled monolayers, although the USAL gives a redundant interface and amorphous molecule patterns, it can also provide many benefits, including easy assembly, more thermal bridges, and ready pressurization. Three small organic molecules (SOMs) were assembled into an LCO-PE interface, providing unique functional groups, -NH2, -SH, and -CH3, to illustrate its energy conversion efficiency. Through molecular dynamics simulations, our results show that the USAL can facilitate interfacial heat transfer remarkably. A 3-aminopropyl trimethoxysilane (APTMS)-coated LCO-PE system with 11.4 Å thickness demonstrates the maximum enhancement of thermal conductance, about 320% of the pristine system. Such enhancement is attributed to the developed double heat passages by strong non-bonded interactions across LCO-SOM and PE-SOM interfaces, a tuned temperature field, and high compatibility between SOMs and PE. Importantly, due to SOMs' amorphous morphology, the pressure can be imposed and further enhance the interfacial heat transfer. Results show the improved thermal conductance rises the most for the APTMS-coated LCO-PE system with 11.4 Å thickness at 10 GPa, almost 685% higher than that of the pristine system. The high efficiency of heat transfer comes as a result of the enhanced binding strength across the LCO-SOM and SOM-PE interface, the reduced phonon scattering in PE and SOMs, and the high LCO stiffness. These investigations are expected to provide a new perspective for modulating the heat transfer across the interphase of LIBs and achieve more effective thermal management for the multi-material system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路的书南应助A9W01U采纳,获得10
刚刚
刚刚
Yurole完成签到,获得积分10
刚刚
安静大树完成签到,获得积分10
1秒前
依然完成签到,获得积分10
2秒前
2秒前
我来电了发布了新的文献求助10
2秒前
Gary发布了新的文献求助10
2秒前
天真的不尤完成签到 ,获得积分10
3秒前
科研通AI5应助奋斗若风采纳,获得10
3秒前
3秒前
莫迟发布了新的文献求助10
4秒前
xx发布了新的文献求助10
5秒前
简单点发布了新的文献求助10
5秒前
小蘑菇应助毕业大吉采纳,获得10
6秒前
6秒前
伶俐鬼神发布了新的文献求助10
7秒前
zt1812431172完成签到,获得积分10
8秒前
min发布了新的文献求助10
8秒前
8秒前
谢升澜完成签到 ,获得积分10
9秒前
9秒前
9秒前
含糊的冰夏关注了科研通微信公众号
10秒前
纯真雁菱发布了新的文献求助10
11秒前
Akim应助独特的春采纳,获得10
11秒前
自由的星星完成签到,获得积分10
12秒前
lizhiqian2024发布了新的文献求助10
12秒前
ash完成签到,获得积分10
12秒前
13秒前
情怀应助吴五五采纳,获得10
13秒前
凌风发布了新的文献求助10
13秒前
13秒前
赵飞燕完成签到,获得积分20
14秒前
江户川发布了新的文献求助10
14秒前
14秒前
小Q啊啾发布了新的文献求助10
15秒前
16秒前
16秒前
柿柿石榴籽完成签到,获得积分10
17秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806134
求助须知:如何正确求助?哪些是违规求助? 3350986
关于积分的说明 10352268
捐赠科研通 3066831
什么是DOI,文献DOI怎么找? 1684153
邀请新用户注册赠送积分活动 809346
科研通“疑难数据库(出版商)”最低求助积分说明 765463