The Molecular Mechanism of Nanodroplet Stability

化学物理 机制(生物学) 材料科学 纳米技术 化学 理论(学习稳定性) 计算机科学 量子力学 物理 机器学习
作者
Evangelia Zdrali,Yixing Chen,Halil İ. Okur,David M. Wilkins,Sylvie Roke
出处
期刊:ACS Nano [American Chemical Society]
卷期号:11 (12): 12111-12120 被引量:54
标识
DOI:10.1021/acsnano.7b05100
摘要

Mixtures of nano- and microscopic oil droplets in water have recently been rediscovered as miniature reaction vessels in microfluidic environments and are important constituents of many environmental systems, food, personal care, and medical products. The oil nanodroplet/water interface stabilized by surfactants determines the physicochemical properties of the droplets. Surfactants are thought to stabilize nanodroplets by forming densely packed monolayers that shield the oil phase from the water. This idea has been inferred from droplet stability measurements in combination with molecular structural data obtained from extended planar interfaces. Here, we present a molecular level investigation of the surface structure and stability of nanodroplets and show that the surface structure of nanodroplets is significantly different from that of extended planar interfaces. Charged surfactants form monolayers that are more than 1 order of magnitude more dilute than geometrically packed ones, and there is no experimental correlation between stability and surfactant surface density. Moreover, dilute negatively charged surfactant monolayers produce more stable nanodroplets than dilute positively charged and dense geometrically packed neutral surfactant monolayers. Droplet stability is found to depend on the relative cooperativity between charge-charge, charge-dipole, and hydrogen-bonding interactions. The difference between extended planar interfaces and nanoscale interfaces stems from a difference in the thermally averaged total charge-charge interactions in the two systems. Low dielectric oil droplets with a size smaller than the Debye length in oil permit repulsive interactions between like charges from opposing interfaces in small droplets. This behavior is generic and extends up to the micrometer length scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
6秒前
加油加油发布了新的文献求助10
6秒前
Nia发布了新的文献求助10
7秒前
cff发布了新的文献求助10
8秒前
LLL发布了新的文献求助30
8秒前
852应助Robin采纳,获得10
15秒前
今后应助devilito采纳,获得30
16秒前
17秒前
嘎嘎嘎嘎完成签到,获得积分10
17秒前
18秒前
cff完成签到,获得积分10
18秒前
22秒前
23秒前
25秒前
完美世界应助Robin采纳,获得10
26秒前
27秒前
XM发布了新的文献求助10
28秒前
彪壮的小玉完成签到,获得积分10
37秒前
科研通AI5应助dhua采纳,获得30
40秒前
甜甜圈完成签到,获得积分20
41秒前
bc应助ddh采纳,获得30
44秒前
45秒前
48秒前
kai发布了新的文献求助10
50秒前
devilito发布了新的文献求助30
52秒前
52秒前
364zdk完成签到 ,获得积分10
52秒前
Tink完成签到,获得积分10
54秒前
55秒前
新晋学术小生完成签到 ,获得积分10
55秒前
56秒前
57秒前
刘搞笑发布了新的文献求助10
57秒前
善学以致用应助oia采纳,获得10
58秒前
caimeng发布了新的文献求助10
59秒前
59秒前
小苗发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217907
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758415