亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A comparison of regression methods for model selection in individual‐based landscape genetic analysis

景观连通性 选择(遗传算法) 生物 集合种群 生物群落 回归分析 生态学 人口 回归 抗性(生态学) 线性模型 统计 生物扩散 计算机科学 机器学习 数学 生态系统 社会学 人口学
作者
Andrew J. Shirk,Erin L. Landguth,Samuel A. Cushman
出处
期刊:Molecular Ecology Resources [Wiley]
卷期号:18 (1): 55-67 被引量:78
标识
DOI:10.1111/1755-0998.12709
摘要

Anthropogenic migration barriers fragment many populations and limit the ability of species to respond to climate-induced biome shifts. Conservation actions designed to conserve habitat connectivity and mitigate barriers are needed to unite fragmented populations into larger, more viable metapopulations, and to allow species to track their climate envelope over time. Landscape genetic analysis provides an empirical means to infer landscape factors influencing gene flow and thereby inform such conservation actions. However, there are currently many methods available for model selection in landscape genetics, and considerable uncertainty as to which provide the greatest accuracy in identifying the true landscape model influencing gene flow among competing alternative hypotheses. In this study, we used population genetic simulations to evaluate the performance of seven regression-based model selection methods on a broad array of landscapes that varied by the number and type of variables contributing to resistance, the magnitude and cohesion of resistance, as well as the functional relationship between variables and resistance. We also assessed the effect of transformations designed to linearize the relationship between genetic and landscape distances. We found that linear mixed effects models had the highest accuracy in every way we evaluated model performance; however, other methods also performed well in many circumstances, particularly when landscape resistance was high and the correlation among competing hypotheses was limited. Our results provide guidance for which regression-based model selection methods provide the most accurate inferences in landscape genetic analysis and thereby best inform connectivity conservation actions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
shapvalue发布了新的文献求助10
11秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
云猫完成签到 ,获得积分10
38秒前
东方傲儿发布了新的文献求助10
49秒前
1分钟前
救救关注了科研通微信公众号
1分钟前
DrCuiTianjin完成签到 ,获得积分10
1分钟前
Hello应助东方傲儿采纳,获得10
1分钟前
东方傲儿完成签到,获得积分10
1分钟前
阿浩完成签到,获得积分10
1分钟前
阿浩发布了新的文献求助10
1分钟前
梅啦啦完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
学霸发布了新的文献求助10
2分钟前
彩色莞完成签到 ,获得积分10
3分钟前
Kevin完成签到,获得积分10
3分钟前
豆乳米麻薯完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
深情安青应助科研通管家采纳,获得10
4分钟前
丁娜发布了新的文献求助10
5分钟前
5分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
7分钟前
WerWu完成签到,获得积分10
7分钟前
香蕉觅云应助自信松思采纳,获得10
7分钟前
7分钟前
自信松思发布了新的文献求助10
7分钟前
8分钟前
8分钟前
NexusExplorer应助文献求助采纳,获得10
8分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Achieving 99% link uptime on a fleet of 100G space laser inter-satellite links in LEO 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Ethnicities: Media, Health, and Coping 700
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3090960
求助须知:如何正确求助?哪些是违规求助? 2743271
关于积分的说明 7572815
捐赠科研通 2393899
什么是DOI,文献DOI怎么找? 1269496
科研通“疑难数据库(出版商)”最低求助积分说明 614345
版权声明 598756