Fake News Detection on Social Media

社会化媒体 假新闻 计算机科学 互联网隐私 新闻媒体 质量(理念) 透视图(图形) 数据科学 万维网 广告 人工智能 业务 认识论 哲学
作者
Kai Shu,Amy Sliva,Suhang Wang,Jiliang Tang,Huan Liu
出处
期刊:SIGKDD explorations [Association for Computing Machinery]
卷期号:19 (1): 22-36 被引量:1877
标识
DOI:10.1145/3137597.3137600
摘要

Social media for news consumption is a double-edged sword. On the one hand, its low cost, easy access, and rapid dissemination of information lead people to seek out and consume news from social media. On the other hand, it enables the wide spread of \fake news", i.e., low quality news with intentionally false information. The extensive spread of fake news has the potential for extremely negative impacts on individuals and society. Therefore, fake news detection on social media has recently become an emerging research that is attracting tremendous attention. Fake news detection on social media presents unique characteristics and challenges that make existing detection algorithms from traditional news media ine ective or not applicable. First, fake news is intentionally written to mislead readers to believe false information, which makes it difficult and nontrivial to detect based on news content; therefore, we need to include auxiliary information, such as user social engagements on social media, to help make a determination. Second, exploiting this auxiliary information is challenging in and of itself as users' social engagements with fake news produce data that is big, incomplete, unstructured, and noisy. Because the issue of fake news detection on social media is both challenging and relevant, we conducted this survey to further facilitate research on the problem. In this survey, we present a comprehensive review of detecting fake news on social media, including fake news characterizations on psychology and social theories, existing algorithms from a data mining perspective, evaluation metrics and representative datasets. We also discuss related research areas, open problems, and future research directions for fake news detection on social media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
nothing发布了新的文献求助10
2秒前
Shelby发布了新的文献求助30
3秒前
坚定的藏花完成签到,获得积分10
3秒前
在水一方应助啊是是是采纳,获得10
4秒前
5秒前
Shelby完成签到,获得积分10
6秒前
zwy发布了新的文献求助10
7秒前
CyrusSo524应助Steven采纳,获得10
7秒前
CodeCraft应助香香采纳,获得10
7秒前
msn00完成签到,获得积分10
8秒前
田様应助清新的音响采纳,获得10
9秒前
Django完成签到,获得积分10
11秒前
11秒前
13秒前
13秒前
嗯嗯完成签到 ,获得积分10
15秒前
15秒前
16秒前
xmy发布了新的文献求助10
17秒前
w934420513发布了新的文献求助10
19秒前
xiuxiu_27完成签到 ,获得积分10
19秒前
施储完成签到,获得积分10
19秒前
20秒前
香香发布了新的文献求助10
20秒前
腼腆的洪纲完成签到,获得积分10
21秒前
韩hqf发布了新的文献求助10
23秒前
王晓静完成签到 ,获得积分10
23秒前
26秒前
27秒前
27秒前
白瓜完成签到 ,获得积分10
30秒前
小可完成签到 ,获得积分10
31秒前
CipherSage应助疯狂的凝云采纳,获得10
31秒前
sy发布了新的文献求助10
32秒前
我是屈原在世完成签到,获得积分10
32秒前
35秒前
文静小刺猬完成签到,获得积分10
38秒前
Luos完成签到,获得积分10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778170
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10215999
捐赠科研通 3039020
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758339