材料科学
铋
剥脱关节
各向异性
纳米技术
纳米材料
结晶
石墨烯
纳米电子学
基质(水族馆)
范德瓦尔斯力
带隙
正交晶系
Crystal(编程语言)
光电子学
晶体结构
化学工程
结晶学
光学
海洋学
物理
化学
工程类
有机化学
分子
地质学
冶金
程序设计语言
计算机科学
作者
Kibret A. Messalea,Ali Zavabeti,Md Mohiuddin,Nitu Syed,Azmira Jannat,Paul Atkin,Taimur Ahmed,Sumeet Walia,C. F. McConville,Kourosh Kalantar‐zadeh,Nasir Mahmood,Khashayar Khoshmanesh,Torben Daeneke
标识
DOI:10.1002/admi.202001131
摘要
Abstract 2D materials with high in‐plane anisotropy are rapidly emerging as a tantalizing class of nanomaterials with promising applications in nanoelectronics and optoelectronics since they provide an additional degree of freedom that can be exploited in device design. The large‐area synthesis of such materials remains however challenging since the anisotropic crystal structure renders identifying a suitable growth substrate to be difficult, while the nanosheets are usually too fragile for the exfoliation and transfer of macroscopic sheets. This work reports the scalable synthesis of highly crystalline, large‐area 2D Bi 2 S 3 nanosheets using a novel liquid‐metal‐based synthesis approach. Ultrathin bismuth oxide sheets are exfoliated from molten bismuth followed by tube furnace sulfurization. The strategy effectively separates the formation of layered structures from the process of anisotropic crystallization, overcoming the shortcomings of established techniques. The synthesized nanosheets feature a highly anisotropic orthorhombic crystal structure with intraplane van der Waals gaps and a direct bandgap of ≈2.3 eV. The nanosheets are found to be highly photoconductive with a photoresponsivity of 8 A W −1 . Bi 2 S 3 channel‐based field effect transistors feature a maximum hole mobility of 28 cm 2 V −1 s −1 , highlighting the excellent electronic properties of the isolated nanosheets.
科研通智能强力驱动
Strongly Powered by AbleSci AI