Predicting Survival After Hepatocellular Carcinoma Resection Using Deep Learning on Histological Slides

肝细胞癌 医学 人工智能 生存分析 卷积神经网络 肿瘤科 深度学习 内科学 机器学习 放射科 比例危险模型 计算机科学
作者
Charlie Saillard,Benoît Schmauch,Oumeima Laifa,Matahi Moarii,Sylvain Toldo,Mikhail Zaslavskiy,Elodie Pronier,Alexis Laurent,Giuliana Amaddeo,Hélène Regnault,Danièle Sommacale,Marianne Ziol,Jean‐Michel Pawlotsky,Sebastien Mulé,Alain Luciani,Gilles Wainrib,Thomas Clozel,Pierre Courtiol,Julien Caldéraro
出处
期刊:Hepatology [Lippincott Williams & Wilkins]
卷期号:72 (6): 2000-2013 被引量:275
标识
DOI:10.1002/hep.31207
摘要

Background and Aims Standardized and robust risk‐stratification systems for patients with hepatocellular carcinoma (HCC) are required to improve therapeutic strategies and investigate the benefits of adjuvant systemic therapies after curative resection/ablation. Approach and Results In this study, we used two deep‐learning algorithms based on whole‐slide digitized histological slides (whole‐slide imaging; WSI) to build models for predicting survival of patients with HCC treated by surgical resection. Two independent series were investigated: a discovery set (Henri Mondor Hospital, n = 194) used to develop our algorithms and an independent validation set (The Cancer Genome Atlas [TCGA], n = 328). WSIs were first divided into small squares (“tiles”), and features were extracted with a pretrained convolutional neural network (preprocessing step). The first deep‐learning–based algorithm (“SCHMOWDER”) uses an attention mechanism on tumoral areas annotated by a pathologist whereas the second (“CHOWDER”) does not require human expertise. In the discovery set, c‐indices for survival prediction of SCHMOWDER and CHOWDER reached 0.78 and 0.75, respectively. Both models outperformed a composite score incorporating all baseline variables associated with survival. Prognostic value of the models was further validated in the TCGA data set, and, as observed in the discovery series, both models had a higher discriminatory power than a score combining all baseline variables associated with survival. Pathological review showed that the tumoral areas most predictive of poor survival were characterized by vascular spaces, the macrotrabecular architectural pattern, and a lack of immune infiltration. Conclusions This study shows that artificial intelligence can help refine the prediction of HCC prognosis. It highlights the importance of pathologist/machine interactions for the construction of deep‐learning algorithms that benefit from expert knowledge and allow a biological understanding of their output.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_nqv5WZ完成签到 ,获得积分10
2秒前
Tysonqu完成签到,获得积分10
9秒前
科研王帝同学完成签到 ,获得积分10
17秒前
bill完成签到,获得积分10
19秒前
科研顺利完成签到,获得积分10
20秒前
baa完成签到,获得积分10
20秒前
rofsc完成签到 ,获得积分10
21秒前
粗犷的夏槐完成签到 ,获得积分10
22秒前
调皮平蓝完成签到,获得积分10
24秒前
GSQ完成签到,获得积分10
25秒前
辞清完成签到 ,获得积分10
27秒前
猪鼓励完成签到,获得积分10
27秒前
小鱼完成签到 ,获得积分10
27秒前
28秒前
28秒前
mrconli完成签到,获得积分10
29秒前
Owen应助科研通管家采纳,获得150
30秒前
慕青应助科研通管家采纳,获得150
30秒前
万能图书馆应助科研通管家采纳,获得150
30秒前
JamesPei应助科研通管家采纳,获得10
30秒前
完美世界应助科研通管家采纳,获得150
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
落寞的幻竹完成签到,获得积分10
30秒前
ldr888完成签到,获得积分10
31秒前
zozox完成签到 ,获得积分10
33秒前
lynn发布了新的文献求助30
33秒前
蜡笔小z完成签到 ,获得积分10
33秒前
笑傲江湖完成签到,获得积分10
39秒前
ESC惠子子子子子完成签到 ,获得积分10
40秒前
脑洞疼应助L_chen采纳,获得10
41秒前
小杨完成签到 ,获得积分10
43秒前
失眠的笑翠完成签到 ,获得积分10
46秒前
南宫士晋完成签到 ,获得积分10
46秒前
笨笨青筠完成签到 ,获得积分10
47秒前
lynn完成签到,获得积分10
51秒前
Shandongdaxiu完成签到 ,获得积分10
52秒前
半斤完成签到 ,获得积分10
53秒前
56秒前
yain完成签到 ,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5174876
求助须知:如何正确求助?哪些是违规求助? 4364244
关于积分的说明 13586332
捐赠科研通 4213117
什么是DOI,文献DOI怎么找? 2310959
邀请新用户注册赠送积分活动 1309910
关于科研通互助平台的介绍 1257730