Feature selection of mime speech recognition using surface electromyography data

计算机科学 随机森林 模式识别(心理学) 人工智能 预处理器 语音识别 特征(语言学) 插值(计算机图形学) 特征提取 特征选择 噪音(视频) 分割 语言学 运动(物理) 图像(数学) 哲学
作者
Ming Zhang,Wei Zhang,Bixuan Zhang,You Wang,Guang Li
标识
DOI:10.1109/cac48633.2019.8996646
摘要

Surface electromyography (sEMG) is a potential technique and resolution to information transmission and communication problems in noise surroundings as well as military environment. By capturing facial sEMG signals from several particular articulatory muscles, this study aims to find out features and patterns underlying sEMG data, thus decoding the speech information. In this paper, mime speech recognition on ten Chinese characters using random forest (RF) algorithm is accomplished and multiple patterns have been effectively recognized. Interpolation and alignment are applied to improve the recognition accuracy for sEMG signals with the same label. The sEMG signals are quite different in both fluctuation and span length, thus making data split and segmentation of raw data necessary. After data preprocessing, overlapped windowing techniques, which requires opportune window length and shifts, has been used to extract sEMG features. To explore proper method and feature combinations that can yield satisfactory performance, recognition results of various classification methods are compared. As an ensemble learning algorithm, random forest method is used to predict speech information and give recognition results. Experimental outcomes have indicated that the method of bicubic interpolation, alignment and windowing yields recognition accuracy that outperform other competing approaches. Classification results further demonstrate the combination of overlapped windowing technique and random forest algorithm is effective on mine speech recognition tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赘婿应助123采纳,获得10
3秒前
5秒前
9秒前
YCD应助科研通管家采纳,获得20
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
10秒前
科目三应助科研通管家采纳,获得10
10秒前
飞快的怀寒完成签到,获得积分10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
11秒前
叶子发布了新的文献求助20
13秒前
14秒前
小鑫发布了新的文献求助30
15秒前
16秒前
chen完成签到,获得积分10
16秒前
莫氓完成签到 ,获得积分10
17秒前
俭朴夜雪完成签到,获得积分10
18秒前
李健应助renpp822采纳,获得30
18秒前
19秒前
123发布了新的文献求助10
19秒前
20秒前
21秒前
斑比发布了新的文献求助20
22秒前
辣辣发布了新的文献求助10
22秒前
Dobby发布了新的文献求助10
22秒前
mycishere发布了新的文献求助10
23秒前
zho驳回了华仔应助
24秒前
Dobby发布了新的文献求助10
26秒前
DJsky123发布了新的文献求助10
28秒前
小背包完成签到 ,获得积分10
28秒前
28秒前
renpp822完成签到,获得积分10
31秒前
32秒前
令狐远航发布了新的文献求助10
33秒前
34秒前
科研通AI5应助辣辣采纳,获得10
35秒前
37秒前
Daily完成签到,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781475
求助须知:如何正确求助?哪些是违规求助? 3327032
关于积分的说明 10229289
捐赠科研通 3041969
什么是DOI,文献DOI怎么找? 1669728
邀请新用户注册赠送积分活动 799249
科研通“疑难数据库(出版商)”最低求助积分说明 758757