The Performance of LSTM and BiLSTM in Forecasting Time Series

计算机科学 人工智能 系列(地层学) 时间序列 机器学习 地质学 古生物学
作者
Sima Siami‐Namini,Neda Tavakoli,Akbar Siami Namin
标识
DOI:10.1109/bigdata47090.2019.9005997
摘要

Machine and deep learning-based algorithms are the emerging approaches in addressing prediction problems in time series. These techniques have been shown to produce more accurate results than conventional regression-based modeling. It has been reported that artificial Recurrent Neural Networks (RNN) with memory, such as Long Short-Term Memory (LSTM), are superior compared to Autoregressive Integrated Moving Average (ARIMA) with a large margin. The LSTM-based models incorporate additional "gates" for the purpose of memorizing longer sequences of input data. The major question is that whether the gates incorporated in the LSTM architecture already offers a good prediction and whether additional training of data would be necessary to further improve the prediction. Bidirectional LSTMs (BiLSTMs) enable additional training by traversing the input data twice (i.e., 1) left-to-right, and 2) right-to-left). The research question of interest is then whether BiLSTM, with additional training capability, outperforms regular unidirectional LSTM. This paper reports a behavioral analysis and comparison of BiLSTM and LSTM models. The objective is to explore to what extend additional layers of training of data would be beneficial to tune the involved parameters. The results show that additional training of data and thus BiLSTM-based modeling offers better predictions than regular LSTM-based models. More specifically, it was observed that BiLSTM models provide better predictions compared to ARIMA and LSTM models. It was also observed that BiLSTM models reach the equilibrium much slower than LSTM-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zm完成签到,获得积分10
1秒前
LLL完成签到,获得积分10
2秒前
2秒前
科研小白鼠完成签到,获得积分10
4秒前
李健应助淡泊宁静采纳,获得10
4秒前
5秒前
lym发布了新的文献求助10
5秒前
6秒前
zm发布了新的文献求助10
6秒前
完美世界应助S123采纳,获得10
9秒前
陈OK发布了新的文献求助10
10秒前
莉莉发布了新的文献求助10
10秒前
Ava应助zzzzz采纳,获得10
12秒前
12秒前
CipherSage应助Golden采纳,获得10
14秒前
爵士黄瓜发布了新的文献求助10
17秒前
陈OK完成签到,获得积分10
18秒前
qzp完成签到 ,获得积分10
18秒前
19秒前
小王爱学习完成签到,获得积分10
20秒前
不吃香菜完成签到,获得积分10
21秒前
21秒前
22秒前
田様应助爵士黄瓜采纳,获得10
22秒前
23秒前
乐乐应助小王爱学习采纳,获得10
25秒前
25秒前
ajiwjn发布了新的文献求助10
25秒前
时尚俊驰发布了新的文献求助10
27秒前
小绵羊发布了新的文献求助10
29秒前
29秒前
Gloria完成签到,获得积分10
31秒前
Sun完成签到,获得积分10
32秒前
33秒前
34秒前
莉莉发布了新的文献求助10
35秒前
35秒前
慕青应助ajiwjn采纳,获得10
37秒前
活泼的代珊完成签到 ,获得积分20
37秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4702168
求助须知:如何正确求助?哪些是违规求助? 4070211
关于积分的说明 12585083
捐赠科研通 3770289
什么是DOI,文献DOI怎么找? 2082378
邀请新用户注册赠送积分活动 1109781
科研通“疑难数据库(出版商)”最低求助积分说明 987943