Machine learning for the prediction of acute kidney injury and paraplegia after thoracoabdominal aortic aneurysm repair

医学 截瘫 逻辑回归 随机森林 支持向量机 机器学习 围手术期 动脉瘤 外科 内科学 计算机科学 脊髓 精神科
作者
Chenyang Zhou,Rong Wang,Wenjian Jiang,Jun‐Ming Zhu,Yongmin Liu,Jun Zheng,Xiaolong Wang,Wei Shang,Li‐Zhong Sun
出处
期刊:Journal of Cardiac Surgery [Wiley]
卷期号:35 (1): 89-99 被引量:21
标识
DOI:10.1111/jocs.14317
摘要

Objective Prediction of acute renal failure (ARF) and paraplegia after thoracoabdominal aortic aneurysm repair (TAAAR) is helpful for decision-making during the postoperative phase. To find a more efficient method for making a prediction, we performed tests on the efficacy of different machine learning predicting models. Methods Perioperative TAAAR data were retrospectively collected from Beijing Anzhen Hospital and Shanghai DeltaHealth Hospital. Operations were conducted under normothermia using a four-branched graft. Four commonly used machine learning classification models (ie, logistic regression, linear and Gaussian kernel support vector machine, and random forest) were chosen to predict ARF and paraplegia separately. The efficacy of the models was validated by five-fold cross-validation. Results From 2009 to 2017, 212 TAAARs were performed. ARF was identified in 27 patients, and paraplegia was found in 18 patients. Five-fold cross-validation showed that among the four classification models, random forest was the most precise model for predicting ARF, with an average area under the curve (AUC) of 0.89 ± 0.08. Linear support vector machine was the most precise model for predicting paraplegia, with an average AUC of 0.89 ± 0.18. The prediction program has been uploaded to GitHub for open access. Conclusion Machine learning models can precisely predict ARF and paraplegia during early stages after surgery. This program allows cardiac surgeons to address complications earlier and may help improve the clinical outcomes of TAAAR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助呵呵采纳,获得10
刚刚
TRISTE完成签到 ,获得积分10
刚刚
2秒前
小吉利完成签到,获得积分20
3秒前
4秒前
krismile完成签到,获得积分20
6秒前
小蘑菇应助感性的寄真采纳,获得30
6秒前
6秒前
幽默赛君完成签到 ,获得积分10
6秒前
打打应助橙子采纳,获得10
6秒前
小吉利发布了新的文献求助10
7秒前
7秒前
8秒前
Owen应助科研通管家采纳,获得10
9秒前
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
Hello应助科研通管家采纳,获得10
9秒前
YX完成签到,获得积分10
10秒前
高源伯发布了新的文献求助10
11秒前
彩色的寄柔完成签到,获得积分10
12秒前
妖妖灵完成签到,获得积分10
12秒前
13秒前
panpanh发布了新的文献求助10
13秒前
skyveblue完成签到,获得积分10
13秒前
15秒前
lidongxing发布了新的文献求助10
16秒前
17秒前
JUDGEsir发布了新的文献求助10
18秒前
ZSJ完成签到,获得积分10
19秒前
21秒前
辛勤的大雁完成签到,获得积分10
23秒前
wt发布了新的文献求助10
23秒前
汉堡包应助无糖全麦面包采纳,获得10
23秒前
24秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4056230
求助须知:如何正确求助?哪些是违规求助? 3594329
关于积分的说明 11419977
捐赠科研通 3320180
什么是DOI,文献DOI怎么找? 1825613
邀请新用户注册赠送积分活动 896656
科研通“疑难数据库(出版商)”最低求助积分说明 817971