Spectroscopic detection of rice leaf blast infection from asymptomatic to mild stages with integrated machine learning and feature selection

高光谱成像 无症状的 特征选择 人工智能 模式识别(心理学) 生物 计算机科学 特征(语言学) 选择(遗传算法) 遥感 医学 病理 地质学 语言学 哲学
作者
Long Tian,Bowen Xue,Ziyi Wang,Dong Liu,Xia Yao,Qiang Cao,Yan Zhu,Weixing Cao,Tao Cheng
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:257: 112350-112350 被引量:50
标识
DOI:10.1016/j.rse.2021.112350
摘要

Rice blast is considered as the most destructive disease that threatens global rice production and causes severe economic losses worldwide. A detection of rice blast infection in an early manner is vital to limit its expansion and proliferation. However, little research has been devoted to spectral detection of rice leaf blast (RLB) infection, especially at the asymptomatic or early stages. To fill the gap, this study aimed to examine the feasibility of detecting RLB infection from leaf reflectance spectra at asymptomatic, early and mild stages of disease development. Greenhouse experiments were conducted over two consecutive years to collect hyperspectral data (350–2500 nm) on various days after inoculation (DAIs) for the three infection stages. These hyperspectral data were processed to select disease specific spectral features (DSSFs). Such DSSFs were then used to feed the machine learning based sequential floating forward selection (ML-SFFS) methodology for determining the optimal feature combination (OFC) and overall accuracy (OA) in the detection of RLB at various infection stages. The results demonstrated that the rice plants displayed considerable biochemical and spectral variations and this pattern of variations existed consistently during plant-pathogen interactions. A multivariate pool of DSSFs comprising two reflectance bands, fourteen SIs, and five continuous wavelet coefficients, were determined for revealing the dynamic response of RLB infection across two years. The combination of 2 to 4 spectral features selected by the ML-SFFS algorithm was sufficient to identify infected leaves with classification accuracies over 65% and 80% for the asymptomatic and early infection stages, respectively. The OA could rise up to 95% for the mild stage. Compared to the use of all DSSFs with a support vector machine (SVM) classifier, the SVM-based SFFS (SVM-SFFS) algorithm prevailed in the classification accuracy up to 10% over the sampling period. Our results demonstrated the feasibility of accurate classification of RLB infected samples by ML-SFFS. This study suggests that reflectance spectroscopy has great potential in the pre-visual detection of RLB infection and airborne or spaceborne imaging spectroscopy is promising for the mapping of early occurrence and severity levels of RLB infection at large scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
csl发布了新的文献求助30
1秒前
1秒前
传奇3应助危机的硬币采纳,获得10
2秒前
梅七发布了新的文献求助10
2秒前
2秒前
我好困完成签到,获得积分20
2秒前
splatoon发布了新的文献求助10
3秒前
3秒前
科研助手6应助bxyyy采纳,获得10
4秒前
动漫大师发布了新的文献求助10
4秒前
soso1010发布了新的文献求助10
4秒前
4秒前
Mmmm发布了新的文献求助10
5秒前
6秒前
7秒前
斯文败类应助米幺采纳,获得10
7秒前
小虫学长应助WQ采纳,获得20
8秒前
Yang_yangrui发布了新的文献求助10
8秒前
8秒前
lovesonic完成签到,获得积分10
8秒前
8秒前
8秒前
科研通AI5应助涵涵不浪费采纳,获得10
9秒前
CEJ发布了新的文献求助10
9秒前
小滨完成签到 ,获得积分10
9秒前
letter发布了新的文献求助10
9秒前
泥花完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
畅快沁完成签到,获得积分10
11秒前
木木完成签到,获得积分10
11秒前
脑洞疼应助csl采纳,获得10
12秒前
纯情的驳发布了新的文献求助10
12秒前
12秒前
1111发布了新的文献求助10
12秒前
ccqqww完成签到,获得积分10
12秒前
12秒前
动漫大师发布了新的文献求助10
12秒前
田様应助无尽夏采纳,获得10
13秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816654
求助须知:如何正确求助?哪些是违规求助? 3360106
关于积分的说明 10406570
捐赠科研通 3078132
什么是DOI,文献DOI怎么找? 1690563
邀请新用户注册赠送积分活动 813815
科研通“疑难数据库(出版商)”最低求助积分说明 767883