已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of Permeability Using Random Forest and Genetic Algorithm Model

磁导率 均方误差 随机森林 相关系数 遗传算法 决定系数 计算机科学 算法 土壤科学 数据挖掘 人工智能 数学 统计 机器学习 环境科学 化学 生物化学
作者
JunhuiWang,Wanzi Yan,ZhijunWan,Yi Wang,Jiakun Lv,Aiping Zhou
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Tech Science Press]
卷期号:125 (3): 1135-1157 被引量:19
标识
DOI:10.32604/cmes.2020.014313
摘要

Precise recovery of Coalbed Methane (CBM) based on transparent reconstruction of geological conditions is a branch of intelligent mining. The process of permeability reconstruction, ranging from data perception to real-time data visualization, is applicable to disaster risk warning and intelligent decision-making on gas drainage. In this study, a machine learning method integrating the Random Forest (RF) and the Genetic Algorithm (GA) was established for permeability prediction in the Xishan Coalfield based on Uniaxial Compressive Strength (UCS), effective stress, temperature and gas pressure. A total of 50 sets of data collected by a self-developed apparatus were used to generate datasets for training and validating models. Statistical measures including the coefficient of determination (R2) and Root Mean Square Error (RMSE) were selected to validate and compare the predictive performances of the single RF model and the hybrid RF– GA model. Furthermore, sensitivity studies were conducted to evaluate the importance of input parameters. The results show that, the proposed RF–GA model is robust in predicting the permeability; UCS is directly correlated to permeability, while all other inputs are inversely related to permeability; the effective stress exerts the greatest impact on permeability based on importance score, followed by the temperature (or gas pressure) and UCS. The partial dependence plots, indicative of marginal utility of each feature in permeability prediction, are in line with experimental results. Thus, the proposed hybrid model (RF–GA) is capable of predicting permeability and thus beneficial to precise CBM recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助六沉采纳,获得10
1秒前
2秒前
2秒前
丘比特应助土豆采纳,获得10
7秒前
7秒前
Setsail24k完成签到,获得积分10
8秒前
10秒前
苏A尔发布了新的文献求助10
11秒前
12秒前
科研通AI5应助李伊采纳,获得10
13秒前
14秒前
yaxianzhi完成签到,获得积分10
15秒前
16秒前
单薄雁芙发布了新的文献求助10
16秒前
土豆发布了新的文献求助10
19秒前
21秒前
高兴的幻柏完成签到 ,获得积分10
21秒前
思源应助Naza1119采纳,获得10
26秒前
华仔应助珩溢采纳,获得10
26秒前
好事发生666完成签到,获得积分10
27秒前
27秒前
27秒前
黎长江完成签到,获得积分10
28秒前
30秒前
30秒前
意识流发布了新的文献求助10
33秒前
LJC发布了新的文献求助30
35秒前
CodeCraft应助哎咦随风起采纳,获得10
35秒前
36秒前
安静的叫兽完成签到,获得积分10
37秒前
左肩微笑发布了新的文献求助10
38秒前
38秒前
Naza1119发布了新的文献求助10
39秒前
40秒前
赘婿应助狮子清明尊采纳,获得10
42秒前
小医庐发布了新的文献求助10
43秒前
雪白的听寒完成签到 ,获得积分10
45秒前
hyg发布了新的文献求助10
45秒前
暮雪残梅完成签到 ,获得积分10
47秒前
47秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792319
求助须知:如何正确求助?哪些是违规求助? 3336507
关于积分的说明 10281242
捐赠科研通 3053236
什么是DOI,文献DOI怎么找? 1675541
邀请新用户注册赠送积分活动 803492
科研通“疑难数据库(出版商)”最低求助积分说明 761436