Computer vision-guided bronchoscopic navigation using dual CNN-generated depth images and ICP registration

计算机视觉 标准差 人工智能 计算机科学 图像配准 支气管镜检查 呼吸 金标准(测试) 医学 图像(数学) 数学 放射科 统计 解剖
作者
Xinqi Liu,Jonah R. Berg,Franklin King,Nobuhiko Hata
标识
DOI:10.1117/12.2549719
摘要

Navigated bronchoscopy for the lung biopsy using an electro-magnetic (EM) sensor is often inaccurate due to patient breathing movement during procedures. The objective of this study is to evaluate whether registration of neural network- generated depth images can localize the bronchoscope in navigated bronchoscopy negating the need for EM sensor and error caused by breathing motion. [Methods] Dual CNN-generated depth images followed chained ICP registration were validated in the study. Accuracy was measured by the error between the location after registration and the location of the standard electromagnetic sensor. Difference in accuracy between regions that the neural networks had trained on (seen regions) and regions the networks had never encountered (unseen regions) was validated. [Results] The data collected points to the success of the bronchoscopic localization. Overall mean error of accuracy was 8.75 mm and the overall standard deviation was 4.76mm. For the seen region, the mean error was 6.10mm and the standard deviation was 2.65mm. For the unseen region, the mean error was 11.6mm and the standard deviation was 4.87mm. The results of the two-sample t-test shows that there is a statistically significant difference between the unseen and the seen region. [Conclusion] The results for registration demonstrate that this technique has potential to be implemented in navigational bronchoscopy. The technique produced less error than the electromagnetic sensor in practice, especially accounting for the estimated practical error due to experimental setup.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
XLL小绿绿发布了新的文献求助10
2秒前
linmo完成签到,获得积分10
3秒前
大模型应助听话的雁梅采纳,获得10
3秒前
狂野芷蕾发布了新的文献求助10
6秒前
7秒前
慢慢完成签到,获得积分20
7秒前
SYLH应助Kvolu29采纳,获得10
7秒前
zzz驳回了Orange应助
8秒前
满意芯完成签到,获得积分20
10秒前
10秒前
11秒前
tianyy完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
lvshiwen完成签到,获得积分10
13秒前
SYLH应助小小橙采纳,获得10
13秒前
LHJ完成签到,获得积分10
13秒前
linmo发布了新的文献求助10
14秒前
啦啦啦发布了新的文献求助10
15秒前
Ning_完成签到,获得积分10
16秒前
妮妮完成签到,获得积分20
16秒前
JYLLLLLL发布了新的文献求助10
16秒前
17秒前
务实蜻蜓发布了新的文献求助10
17秒前
SYLH应助魏冰采纳,获得10
17秒前
18秒前
aaa完成签到,获得积分20
18秒前
科研通AI5应助陈广辉采纳,获得10
18秒前
柒辞发布了新的文献求助10
18秒前
李新颖完成签到,获得积分10
19秒前
19秒前
利酱发布了新的文献求助10
21秒前
赘婿应助JYLLLLLL采纳,获得10
21秒前
CHAIZH发布了新的文献求助10
21秒前
龙龙发布了新的文献求助10
21秒前
21秒前
22秒前
perfectxl发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966589
求助须知:如何正确求助?哪些是违规求助? 3512031
关于积分的说明 11161353
捐赠科研通 3246821
什么是DOI,文献DOI怎么找? 1793510
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420