Topological Network Analysis of Early Alzheimer’s Disease Based on Resting-State EEG

静息状态功能磁共振成像 脑电图 拓扑(电路) 功能连接 国家(计算机科学) 拓扑数据分析 计算机科学 人工智能 数学 模式识别(心理学) 心理学 神经科学 组合数学 算法
作者
Feng Duan,Zihao Huang,Zhe Sun,Yu Zhang,Qibin Zhao,Andrzej Cichocki,Zhenglu Yang,Jordi Solé‐Casals
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:28 (10): 2164-2172 被引量:57
标识
DOI:10.1109/tnsre.2020.3014951
摘要

Previous studies made progress in the early diagnosis of Alzheimer's disease (AD) using electroencephalography (EEG) without considering EEG connectivity. To fill this gap, we explored significant differences between early AD patients and controls based on frequency domain and spatial properties using functional connectivity in mild cognitive impairment (MCI) and mild AD datasets. Four global metrics, network resilience, connection-level metrics and node versatility were used to distinguish between controls and patients. The results show that the main frequency bands that are different between MCI patients and controls are the $\theta $ and low $\alpha $ bands, and the differently affected brain areas are the frontal, left temporal and parietal areas. Compared to MCI patients, in patients with mild AD, the main frequency bands that are different are the low and high $\alpha $ bands, and the main differently affected brain region is a larger right temporal area. Four LOFC bands were used as input to train the ResNet-18 model. For the MCI dataset, the average accuracy of 20 runs was 93.42% and the best accuracy was 98.33%, while for the mild AD dataset, the average accuracy was 98.54% and the best accuracy was 100%. To determine the timing of early treatment and discovering the susceptible patients, and to slow the progression of the disease, we assume that the occurrence of MCI and mild AD and their progression to more serious AD and dementia could be inferred by analyzing the topological structure of the brain network generated by EEG. Our findings provide a novel solution for connectome-based biomarker analysis to improve personalized medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助有魅力向珊采纳,获得10
1秒前
尼莫完成签到,获得积分10
1秒前
向日葵发布了新的文献求助30
2秒前
George完成签到,获得积分10
3秒前
丘比特应助康康采纳,获得10
3秒前
NexusExplorer应助pineapple yang采纳,获得10
4秒前
造梦完成签到 ,获得积分10
5秒前
6秒前
freeway发布了新的文献求助10
6秒前
Forest发布了新的文献求助10
7秒前
khurram完成签到,获得积分10
8秒前
暮冬十二完成签到,获得积分10
9秒前
赘婿应助123采纳,获得10
9秒前
充电宝应助猪猪hero采纳,获得30
9秒前
123456789完成签到,获得积分10
10秒前
李爱国应助薄志远采纳,获得10
10秒前
金乌发布了新的文献求助10
11秒前
造梦关注了科研通微信公众号
12秒前
13秒前
14秒前
在水一方应助健壮的板凳采纳,获得30
15秒前
18秒前
19秒前
19秒前
20秒前
爱你的心完成签到 ,获得积分10
21秒前
21秒前
24秒前
123456完成签到,获得积分10
24秒前
26秒前
整齐乌发布了新的文献求助10
26秒前
追光发布了新的文献求助10
26秒前
echo完成签到,获得积分10
27秒前
顾矜应助飞鱼采纳,获得10
27秒前
宇宇宇发布了新的文献求助30
28秒前
大方夏兰发布了新的文献求助10
30秒前
33秒前
36秒前
WMQ完成签到 ,获得积分10
36秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1155
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4107680
求助须知:如何正确求助?哪些是违规求助? 3645606
关于积分的说明 11548559
捐赠科研通 3352057
什么是DOI,文献DOI怎么找? 1841749
邀请新用户注册赠送积分活动 908297
科研通“疑难数据库(出版商)”最低求助积分说明 825383