亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Topological Network Analysis of Early Alzheimer’s Disease Based on Resting-State EEG

静息状态功能磁共振成像 脑电图 拓扑(电路) 功能连接 国家(计算机科学) 拓扑数据分析 计算机科学 人工智能 数学 模式识别(心理学) 心理学 神经科学 组合数学 算法
作者
Feng Duan,Zihao Huang,Zhe Sun,Yu Zhang,Qibin Zhao,Andrzej Cichocki,Zhenglu Yang,Jordi Solé‐Casals
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:28 (10): 2164-2172 被引量:54
标识
DOI:10.1109/tnsre.2020.3014951
摘要

Previous studies made progress in the early diagnosis of Alzheimer's disease (AD) using electroencephalography (EEG) without considering EEG connectivity. To fill this gap, we explored significant differences between early AD patients and controls based on frequency domain and spatial properties using functional connectivity in mild cognitive impairment (MCI) and mild AD datasets. Four global metrics, network resilience, connection-level metrics and node versatility were used to distinguish between controls and patients. The results show that the main frequency bands that are different between MCI patients and controls are the $\theta $ and low $\alpha $ bands, and the differently affected brain areas are the frontal, left temporal and parietal areas. Compared to MCI patients, in patients with mild AD, the main frequency bands that are different are the low and high $\alpha $ bands, and the main differently affected brain region is a larger right temporal area. Four LOFC bands were used as input to train the ResNet-18 model. For the MCI dataset, the average accuracy of 20 runs was 93.42% and the best accuracy was 98.33%, while for the mild AD dataset, the average accuracy was 98.54% and the best accuracy was 100%. To determine the timing of early treatment and discovering the susceptible patients, and to slow the progression of the disease, we assume that the occurrence of MCI and mild AD and their progression to more serious AD and dementia could be inferred by analyzing the topological structure of the brain network generated by EEG. Our findings provide a novel solution for connectome-based biomarker analysis to improve personalized medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
顾矜应助快乐的不二法门采纳,获得10
5秒前
淞33完成签到 ,获得积分10
6秒前
iu1392发布了新的文献求助30
9秒前
18秒前
sky11完成签到,获得积分10
19秒前
lstj6675发布了新的文献求助10
25秒前
陶醉的钢笔完成签到 ,获得积分10
30秒前
黯然完成签到 ,获得积分10
33秒前
bkagyin应助LL采纳,获得10
36秒前
脑洞疼应助就拒绝内耗采纳,获得10
42秒前
48秒前
Akim应助科研通管家采纳,获得10
48秒前
脑洞疼应助科研通管家采纳,获得10
48秒前
bkagyin应助科研通管家采纳,获得10
48秒前
50秒前
Tangtang561o完成签到 ,获得积分10
53秒前
LL发布了新的文献求助10
54秒前
汤汤完成签到 ,获得积分10
54秒前
56秒前
雨雨雨雨雨文完成签到 ,获得积分10
57秒前
59秒前
不辣的完成签到 ,获得积分10
1分钟前
渔泽发布了新的文献求助10
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
就拒绝内耗完成签到,获得积分20
1分钟前
1分钟前
Clara完成签到,获得积分10
1分钟前
壮观的谷冬完成签到 ,获得积分10
1分钟前
侃侃完成签到,获得积分10
1分钟前
学霸宇大王完成签到 ,获得积分10
1分钟前
WaitP应助LL采纳,获得10
1分钟前
bx发布了新的文献求助10
1分钟前
啥时候吃火锅完成签到 ,获得积分0
1分钟前
FashionBoy应助白日梦我采纳,获得10
1分钟前
红萝卜干st完成签到,获得积分10
1分钟前
Chris完成签到 ,获得积分0
1分钟前
1分钟前
张颖完成签到 ,获得积分10
1分钟前
白日梦我发布了新的文献求助10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798450
求助须知:如何正确求助?哪些是违规求助? 3343875
关于积分的说明 10317895
捐赠科研通 3060562
什么是DOI,文献DOI怎么找? 1679604
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763296