FlyCo: Foundation Model-Empowered Drones for Autonomous 3D Structure Scanning in Open-World Environments

作者
Chen Feng,Guiyong Zheng,Tengkai Zhuang,Yongqian Wu,Fangzhan He,Haojia Li,Jinxiao Zhang,Shaojie Shen,Boyu Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2601.07558
摘要

Autonomous 3D scanning of open-world target structures via drones remains challenging despite broad applications. Existing paradigms rely on restrictive assumptions or effortful human priors, limiting practicality, efficiency, and adaptability. Recent foundation models (FMs) offer great potential to bridge this gap. This paper investigates a critical research problem: What system architecture can effectively integrate FM knowledge for this task? We answer it with FlyCo, a principled FM-empowered perception-prediction-planning loop enabling fully autonomous, prompt-driven 3D target scanning in diverse unknown open-world environments. FlyCo directly translates low-effort human prompts (text, visual annotations) into precise adaptive scanning flights via three coordinated stages: (1) perception fuses streaming sensor data with vision-language FMs for robust target grounding and tracking; (2) prediction distills FM knowledge and combines multi-modal cues to infer the partially observed target's complete geometry; (3) planning leverages predictive foresight to generate efficient and safe paths with comprehensive target coverage. Building on this, we further design key components to boost open-world target grounding efficiency and robustness, enhance prediction quality in terms of shape accuracy, zero-shot generalization, and temporal stability, and balance long-horizon flight efficiency with real-time computability and online collision avoidance. Extensive challenging real-world and simulation experiments show FlyCo delivers precise scene understanding, high efficiency, and real-time safety, outperforming existing paradigms with lower human effort and verifying the proposed architecture's practicality. Comprehensive ablations validate each component's contribution. FlyCo also serves as a flexible, extensible blueprint, readily leveraging future FM and robotics advances. Code will be released.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
睡不醒的喵完成签到,获得积分10
刚刚
1秒前
大模型应助Allein采纳,获得10
1秒前
3秒前
酥饼完成签到,获得积分10
4秒前
一谩发布了新的文献求助10
4秒前
5秒前
老广发布了新的文献求助20
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
BLAZe完成签到 ,获得积分10
6秒前
Xie发布了新的文献求助10
7秒前
7秒前
abc发布了新的文献求助10
7秒前
王小小发布了新的文献求助10
8秒前
9秒前
远方发布了新的文献求助10
9秒前
孙大圣完成签到,获得积分10
9秒前
十一发布了新的文献求助10
10秒前
11秒前
木子完成签到 ,获得积分10
11秒前
如常发布了新的文献求助10
12秒前
smottom应助喵喵采纳,获得10
12秒前
华仔应助喵喵采纳,获得10
12秒前
13秒前
搜集达人应助周曦采纳,获得10
14秒前
14秒前
14秒前
shiyin完成签到,获得积分10
14秒前
善学以致用应助zuitong采纳,获得10
14秒前
安静心情发布了新的文献求助10
15秒前
阔达的代桃完成签到 ,获得积分10
15秒前
16秒前
今后应助zzzzzz采纳,获得10
16秒前
abc完成签到,获得积分10
16秒前
艾妮吗完成签到,获得积分10
17秒前
浪费完成签到 ,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630027
求助须知:如何正确求助?哪些是违规求助? 4721552
关于积分的说明 14972362
捐赠科研通 4788123
什么是DOI,文献DOI怎么找? 2556791
邀请新用户注册赠送积分活动 1517752
关于科研通互助平台的介绍 1478367