已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Classification of steel using laser-induced breakdown spectroscopy combined with deep belief network

深信不疑网络 激光诱导击穿光谱 人工智能 人工神经网络 模式识别(心理学) 线性判别分析 试验装置 计算机科学 反向传播 深度学习 特征(语言学) 非线性系统 集合(抽象数据类型) 生物系统 激光器 光学 物理 程序设计语言 哲学 生物 量子力学 语言学
作者
Guanghui Chen,Qingdong Zeng,Wenxin Li,Xiangang Chen,Mengtian Yuan,Lin Liu,Honghua Ma,Boyun Wang,Yang Liu,Lianbo Guo,Huaqing Yu
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:30 (6): 9428-9428 被引量:17
标识
DOI:10.1364/oe.451969
摘要

The identification of steels is a crucial step in the process of recycling and reusing steel waste. Laser-induced breakdown spectroscopy (LIBS) coupled with machine learning is a convenient method to classify the types of materials. LIBS can generate characteristic spectra of various samples as input variable for steel classification in real time. However, the performance of classification model is limited to the complex input due to similar chemical composition in samples and nonlinearity problems between spectral intensities and elemental concentrations. In this study, we developed a method of LIBS coupled with deep belief network (DBN), which is suitable to deal with a nonlinear problem, to classify 13 brands of special steels. The performance of the training and validation sets were used as the standard to optimize the structure of DBN. For different input, such as the intensities of full-spectra signals and characteristic spectra lines, the accuracies of the optimized DBN model in the training, validation, and test set are all over 98%. Moreover, compared with the self-organizing maps, linear discriminant analysis (LDA), k-nearest neighbor (KNN) and back-propagation artificial neural networks (BPANN), the result of the test set showed that the optimized DBN model performed second best (98.46%) in all methods using characteristic spectra lines as input. The test accuracy of the DBN model could reach 100% and the maximum accuracy of other methods ranged from 62.31% to 96.16% using full-spectra signals as input. This study demonstrates that DBN can extract representative feature information from high-dimensional input, and that LIBS coupled with DBN has great potential for steel classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱大美完成签到,获得积分10
刚刚
YING发布了新的文献求助10
1秒前
星星泡饭发布了新的文献求助10
2秒前
botanist完成签到 ,获得积分10
3秒前
3秒前
九宝完成签到,获得积分10
4秒前
7秒前
9秒前
11秒前
12秒前
阳光发布了新的文献求助10
13秒前
爱与感谢完成签到 ,获得积分10
13秒前
阳阳阳发布了新的文献求助30
14秒前
深情安青应助Zhou采纳,获得10
14秒前
16秒前
武雨寒发布了新的文献求助10
16秒前
动漫大师发布了新的文献求助10
16秒前
XOO发布了新的文献求助10
20秒前
楠茸完成签到 ,获得积分10
20秒前
zfj完成签到 ,获得积分10
24秒前
包容的海豚完成签到 ,获得积分10
25秒前
XOO完成签到,获得积分10
27秒前
zhangpeipei完成签到,获得积分10
27秒前
Aloha完成签到 ,获得积分10
29秒前
占星家完成签到 ,获得积分10
30秒前
31秒前
nnfreya发布了新的文献求助10
31秒前
阳阳阳完成签到,获得积分20
33秒前
34秒前
gungun完成签到,获得积分10
34秒前
711moiii发布了新的文献求助10
36秒前
风风完成签到,获得积分10
37秒前
秋雨完成签到,获得积分20
37秒前
8R60d8应助张张小白采纳,获得10
39秒前
小九202301完成签到,获得积分10
42秒前
43秒前
46秒前
小绿茶发布了新的文献求助10
48秒前
49秒前
所所应助跳跃涵柳采纳,获得10
50秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
Topological Quantum Computing 300
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800731
求助须知:如何正确求助?哪些是违规求助? 3346255
关于积分的说明 10328616
捐赠科研通 3062701
什么是DOI,文献DOI怎么找? 1681157
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646