Modeling bioretention hydrology: Quantifying the performance of DRAINMOD-Urban and the SWMM LID module

生态调节池 低影响开发 水文学(农业) 环境科学 雨水管理模型 雨水 雨水管理 地表径流 岩土工程 地质学 生态学 生物
作者
W.A. Lisenbee,Jon M. Hathaway,Ryan J. Winston
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:612: 128179-128179 被引量:2
标识
DOI:10.1016/j.jhydrol.2022.128179
摘要

• Bioretention volume and hydrograph performance of two calibrated models was compared. • SWMM produced good predicted volumes and outflow hydrographs even when uncalibrated. • DRAINMOD-Urban better represented measured drainage hydrograph shape than SWMM. • Hydrograph-calibration was closest to measured hydrographs and volumes in DRAINMOD-Urban. • In SWMM, the calibration method optimized measured hydrographs or volumes but not both. Bioretention systems have become a leading infiltration-based Low Impact Development (LID) practice to reduce urban stormwater runoff volumes and peak flows. Although these systems have performed well in many site-scale field studies, modeling of bioretention systems has received less attention. Additional studies are needed which calibrate various models to field measurements to investigate and optimize the performance of individual LID practices and effectively scale local interventions to the watershed. DRAINMOD-Urban has been successfully applied to bioretention at the site-scale due to its advanced soil–water accounting using the soil–water characteristic curve and its ability to explicitly model underdrains and internal water storage (IWS) zones. At the same time, the U.S. EPA Stormwater Management Model (SWMM) has become one of the most widely used urban drainage models. The latest version, SWMM5, included dedicated LID modules including a routine for bioretention modeling. In this study, DRAINMOD-Urban and the SWMM LID module were compared through detailed analysis of the internal processes of each model as well as through model calibration and output investigation. The objective was to identify the strengths and weaknesses of each model and compare the performance of both models to a single bioretention cell. Both SWMM and DRAINMOD-Urban were evaluated in calibrated and uncalibrated scenarios since urban drainage models often remain uncalibrated for planning scenario analysis. Following calibration, DRAINMOD-Urban was superior for replicating drainage hydrographs (NSE = 0.60) while SWMM produced better overflow hydrographs (NSE = 0.57). Specifically, SWMM often output a maximum drainage rate that caused rectangular drainage hydrographs, but DRAINMOD-Urban was better able to match the shape of measured drainage hydrographs. While the DRAINMOD-Urban model output was in good agreement with measured drainage and overflow event volumes when calibrated (drainage NSE = 0.83, overflow NSE = 0.57–0.66), SWMM was closer to measured volumes even when uncalibrated (drainage NSE = 0.70–0.93, overflow NSE = 0.59–0.81). This study improved existing knowledge of the SWMM LID module by calibrating to field-collected data from a single bioretention cell for the first time in literature. Furthermore, the results of this study indicate an opportunity for model coupling that could combine the strengths and weaknesses of each model and improve bioretention cell modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助lxd采纳,获得10
2秒前
执执发布了新的文献求助10
4秒前
zhangsudi完成签到,获得积分10
7秒前
小牛同志完成签到,获得积分10
9秒前
13秒前
陈汤完成签到,获得积分10
13秒前
rcrc111发布了新的文献求助10
14秒前
七七完成签到 ,获得积分10
14秒前
冠心没有病完成签到,获得积分10
18秒前
lxd发布了新的文献求助10
19秒前
亿一完成签到,获得积分10
22秒前
25秒前
XINXIN完成签到,获得积分10
25秒前
mkljl完成签到 ,获得积分10
26秒前
亿一发布了新的文献求助20
27秒前
星辰大海应助郭禹霄采纳,获得10
29秒前
沉甸甸发布了新的文献求助10
29秒前
翻斗花园612完成签到,获得积分10
31秒前
33秒前
HCKACECE完成签到 ,获得积分10
33秒前
sarielyu发布了新的文献求助10
36秒前
lynn发布了新的文献求助10
40秒前
哈比人linling完成签到,获得积分10
42秒前
英姑应助zier采纳,获得10
42秒前
QWJ完成签到 ,获得积分10
43秒前
JamesPei应助沉甸甸采纳,获得10
46秒前
49秒前
寻梦完成签到,获得积分10
50秒前
penguinli完成签到,获得积分10
51秒前
wxq完成签到 ,获得积分10
52秒前
天天快乐应助科研通管家采纳,获得10
52秒前
科研通AI5应助科研通管家采纳,获得30
52秒前
脑洞疼应助科研通管家采纳,获得30
52秒前
Akim应助科研通管家采纳,获得10
52秒前
科研通AI5应助科研通管家采纳,获得10
52秒前
斯文败类应助科研通管家采纳,获得10
53秒前
在水一方应助科研通管家采纳,获得30
53秒前
53秒前
大个应助科研通管家采纳,获得10
53秒前
英俊的铭应助科研通管家采纳,获得10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322010
关于积分的说明 10208485
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872