Engineering the gain and bandwidth in avalanche photodetectors

APDS 光电子学 光电探测器 材料科学 波长 光学 光子 穿透深度 半导体 吸收(声学) 雪崩光电二极管 雪崩二极管 物理 探测器 击穿电压 量子力学 电压
作者
Cesar Bartolo-Perez,Ahasan Ahamed,Ahmed S. Mayet,Amita Rawat,Lisa N. McPhillips,Soroush Ghandiparsi,Julien Bec,Gerard Ariño‐Estrada,Simon R. Cherry,Shih-Yuan Wang,Laura Marcu,M. Saif Islam
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:30 (10): 16873-16873 被引量:6
标识
DOI:10.1364/oe.446507
摘要

Avalanche and Single-Photon Avalanche photodetectors (APDs and SPADs) rely on the probability of photogenerated carriers to trigger a multiplication process. Photon penetration depth plays a vital role in this process. In silicon APDs, a significant fraction of the short visible wavelengths is absorbed close to the device surface that is typically highly doped to serve as a contact. Most of the photogenerated carriers in this region can be lost by recombination, get slowly transported by diffusion, or multiplied with high excess noise. On the other hand, the extended penetration depth of near-infrared wavelengths requires thick semiconductors for efficient absorption. This diminishes the speed of the devices due to the long transit time in the thick absorption layer that is required for detecting most of these photons. Here, we demonstrate that it is possible to drive photons to a critical depth in a semiconductor film to maximize their gain-bandwidth performance and increase the absorption efficiency. This approach to engineering the penetration depth for different wavelengths in silicon is enabled by integrating photon-trapping nanoholes on the device surface. The penetration depth of short wavelengths such as 450 nm is increased from 0.25 µm to more than 0.62 µm. On the other hand, for a long-wavelength like 850 nm, the penetration depth is reduced from 18.3 µm to only 2.3 µm, decreasing the device transit time considerably. Such capabilities allow increasing the gain in APDs by almost 400× at 450 nm and by almost 9× at 850 nm. This engineering of the penetration depth in APDs would enable device designs requiring higher gain-bandwidth in emerging technologies such as Fluorescence Lifetime Microscopy (FLIM), Time-of-Flight Positron Emission Tomography (TOF-PET), quantum communications systems, and 3D imaging systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
微笑的铸海完成签到 ,获得积分10
2秒前
一只小面包包包关注了科研通微信公众号
2秒前
夨艺发布了新的文献求助10
3秒前
坤坤发布了新的文献求助10
4秒前
sunyexuan发布了新的文献求助10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
小马同学应助科研通管家采纳,获得30
6秒前
不安青牛应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
雨天完成签到,获得积分10
8秒前
小明完成签到,获得积分10
8秒前
达达完成签到,获得积分10
9秒前
汉堡包应助小明采纳,获得10
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
lifuhao发布了新的文献求助10
14秒前
上官若男应助坤坤采纳,获得10
15秒前
雅哈发布了新的文献求助10
16秒前
山后别相逢完成签到 ,获得积分10
17秒前
17秒前
XL神放发布了新的文献求助10
18秒前
youyuzhuanjia完成签到,获得积分20
18秒前
野生菜狗发布了新的文献求助10
19秒前
sunyexuan完成签到,获得积分10
20秒前
坤坤完成签到,获得积分20
21秒前
vvvvyl发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4314526
求助须知:如何正确求助?哪些是违规求助? 3833816
关于积分的说明 11993453
捐赠科研通 3474012
什么是DOI,文献DOI怎么找? 1905087
邀请新用户注册赠送积分活动 951743
科研通“疑难数据库(出版商)”最低求助积分说明 853299